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Let A be a complex abelian variety of dimension g .

Analytically
A(C) ' Cg/Λ,

where Λ ⊂ Cg is a lattice of rank 2g (the period lattice).
Every point ξ ∈ A(C) can be expressed by real coordinates in a
basis of the lattice.
These coordinates are called Betti coordinates.
We denote them by (β1, . . . , β2g ) ∈ R2g .
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We can identify the period lattice Λ with H1(A(C),Z) ⊂ Lie (A).

Then Λ is the kernel of the exponential map

expA : Lie (A)→ A(C).

Letting γ1, . . . , γ2g be a basis for H1(A(C),Z) and ω1, . . . , ωg a
basis for H0(A,Ω1(A)), the Betti coordinates (β1, . . . , β2g ) of ξ
satisfy ∫ ξ

0
ωj =

2g∑
i=1

βi

∫
γi

ωj , j = 1, . . . , g .
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The relative setting

Let S be a smooth irreducible complex algebraic variety, and

A f→ S be an abelian scheme of relative dimension g .

The Lie algebra of the abelian scheme Lie (A) is a rank g vector
bundle on S .
After replacing S by a Zariski-open dense subset we can suppose it
is the trivial bundle.
The kernel of expA is a locally constant sheaf on S .
Let

S̃ → S(C)

be the universal cover of S . The period lattice admits a basis on
S̃ .

Identifying Lie (A) with Cg , a basis of the period lattice consists of
2g holomorphic functions on S̃ .
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Let ξ : S → A be a section.

With respect to this basis, the Betti map β can be defined as an
analytic map

β : S̃ → R2g .

The rational values of β correspond to torsion values of ξ.
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Aim of this work

Study the generic rank of β, i.e. the maximal rank of the
differential dβ(s̃) when s̃ runs in S̃ .
We shall denote it by rk β.
The rank at any point is always even, since the fibers of the Betti
map are complex analytic varieties.
The generic rank satisfies

0 ≤ rk β ≤ min(2g , 2 dim S).

Theorem [Manin’s Theorem, 1963] If the abelian family A → S
has no fixed part and ξ is non-torsion, then β is non-constant.

In relative dimension g = 1, we deduce the following

Corollary Let E → S be a non-constant family of elliptic curves
and ξ : S → E a section. The set of torsion values of ξ is dense in
S in the complex topology.
If ξ is not identically torsion, for every non-empty open set
U ⊂ S(C) there exists an integer n0 such for all n > n0 there exists
a point s ∈ U such that ξ(s) is a torsion point of order n.
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Given the initial position of the ball, the direction of the first shot
determines the caustic.

Let C be the ellipse, C ′ the dual to the caustic (the variety of
tangent lines). Define the genus one curve

X := {(p, l) ∈ C × C ′ : p ∈ l} ⊂ C × C ′.

The billiard game provides a map X → X . It is an automorphism
without fixed point, so can be identified with a point of
E := Jac(X ).
Changing the direction of the first shot determines a variation of
the elliptic curve E , so an algebraic family of elliptic curves
provided with a section.
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The family turns out to be non-constant.

By Manin’s Theorem the
corresponding Betti map is non-constant.
By its corollary, given the initial position of the ball there are
infinitely many directions giving rise to a periodic trajectory.

This last fact can be proved by considering an n-gon inscribed in
the ellipse of maximal length. In turn, one reproves in this way the
non-constancy of the Betti map (Manin’s theorem).
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In the general case of an abelian scheme A → S one expects in
general that β has maximal rank:

rk β = min(2g , 2 dim S).

It cannot be the case if ξ is contained in a proper subgroup scheme
or if the modular map µA : S → Ag associated to the family
A → S has lower dimensional image.

We prove that under some ‘generically satisfied’ conditions on the
family A → S , not involving the section, the Betti map of every
section not contained in a proper subgroup scheme has maximal
rank.
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Our first result can be stated in terms of the period matrix Z .

Theorem Assume dim S = g, the family has no constant part and
the section is not contained in any proper subgroup scheme. If the
Betti map of the section is not a submersion, then for every vector
µ ∈ Cg and every s̃ ∈ S̃ , there exists a non-zero derivation
∂ ∈ TS̃(s̃) such that ∂(Z · µ) = 0.

This result can be interpreted in the frame of the Kodaira Spencer
map.
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A complete classification of the cases when the rank of β is not
maximal can be achieved in relative dimension ≤ 3.

For instance
we proved

Theorem Let us suppose that g ≤ 3. Assume the monodromy of
A → S is Zariski-dense in Sp2g and that ξ is not contained in a
proper subgroup scheme of A. Then

rk β = 2 min(dµA , g), (0.1)

where dµA is the dimension of the image of modular map
µA : S → Ag .
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The universal hyperelliptic family

Let A →M0,2g+2
∼= (P1 \ {0, 1,∞})2g−1 be the jacobian of the

universal hyperelliptic curve of genus g > 0, defined by the
equation

y2 = x(x − 1)(x − s1) · · · (x − s2g−1).

By Torelli’s theorem, one has dim µA(S) = 2g − 1.

Theorem Let S be a finite cover of (P1 \ {0, 1,∞})2g−1,
ξ : S → A be any non-torsion section. After replacing S by a
suitable dense Zariski-open subset, β becomes a submersion.
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A real case in the hyperelliptic context.

y2 = (x2 − 1)(x − s1) · · · (x − s2g ).

For s1, . . . , s2g pairwise distinct and distinct from ±1 the affine
curve is smooth and has two points in the completion A2 ↪→ P2.
Let ∞+,∞− be these points, and ξ = ξ(s1, . . . , s2g ) be the class
of [∞+]− [∞−] in the jacobian.

Theorem The set of real points s = (s1, . . . , s2g ) ∈ R2g such that
ξ(s) is torsion is dense in the euclidean topology.
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The Kodaira-Spencer map

In a family of algebraic varieties parametrized by a basis S :

X f→ S

fix a point s ∈ S and its fibre Xs .

From the differential of f one obtains the exact sequence of
sheaves on Xs :

0→ TXs → TX|Xs
→ f ∗(TS)|Xs

→ 0.

The associated map

θf : H0(Xs , f
∗(TS)|Xs

) = TS(s)→ H1(Xs ,TXs )

is called the Kodaira-Spencer map of the family

X f→ S

.
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In the case of an abelian scheme with principle polarization, there
are several presentations:

θA : TS ⊗ (LieA)∨ → LieA

θA : TS → End(LieA)∨

Identifying LieA and LieA∨ via polarization, we obtain that θA,∂ is
a symmetric endomorphism of (LieA)∨.
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Description in terms of the period maps

Y :=

(
Ω1 N1

Ω2 N2

)
where Ω1,Ω2,N1,N2 are the (g × g)-matrices

Ω1 =
(∫

γi
ωj

)
i ,j
,Ω2 =

(∫
γi+g

ωj

)
i ,j
,N1 =

(∫
γi
ηj
)
i ,j
,N2 =

(∫
γi+g

ηj
)
i ,j

Here (ω1, . . . , ωg , η1, . . . , ηg ) is a symplectic basis of H1
dR(A/S).

Differential equation for Y : for every derivation ∂ in S

∂Y = Y ·
(

R∂ S∂
T∂ U∂

)
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where R∂ , S∂ ,T∂ ,U∂ are matrices with OS(S).



Viewing the Kodaira-Spencer map as a morphism

θA : TS ⊗ (LieA)∨ → LieA

the symmetric matrix T∂ is the matrix of the Kodaira Spencer map
with respect to the basis (ω1, . . . , ωg ) of (LieA)∨ and η1, . . . , ηg
of LieA.

In the case dim S = g , the condition in our result can be rephrased:

If the Betti map does not have generically maximal rank 2g, then

∀ω ∃∂ 6= 0, θ∂(ω) = 0.
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