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Analytically
A(C) ~ C& /A,

where A C C8 is a lattice of rank 2g (the period lattice).
Every point £ € A(C) can be expressed by real coordinates in a
basis of the lattice.

These coordinates are called Betti coordinates.

We denote them by (i, .., B2¢) € R%.
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Let £ : S — A be a section.

With respect to this basis, the Betti map [ can be defined as an

analytic map 5
B:5—R%,

The rational values of 5 correspond to torsion values of &.
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map are complex analytic varieties.
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Theorem [Manin's Theorem, 1963] If the abelian family A — S
has no fixed part and & is non-torsion, then [3 is non-constant.

In relative dimension g = 1, we deduce the following

Corollary Let £ — S be a non-constant family of elliptic curves
and £ 1 S — £ a section. The set of torsion values of £ is dense in
S in the complex topology.

If £ is not identically torsion, for every non-empty open set

U C S(C) there exists an integer ng such for all n > ng there exists
a point s € U such that £(s) is a torsion point of order n.
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Given the initial position of the ball, the direction of the first shot
determines the caustic.

Let C be the ellipse, C’ the dual to the caustic (the variety of
tangent lines). Define the genus one curve

X:={(p,)eCxC :pel}fcCxCC.

The billiard game provides a map X — X. It is an automorphism
without fixed point, so can be identified with a point of

E := Jac(X).

Changing the direction of the first shot determines a variation of
the elliptic curve E, so an algebraic family of elliptic curves
provided with a section.
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The family turns out to be non-constant. By Manin's Theorem the
corresponding Betti map is non-constant.

By its corollary, given the initial position of the ball there are
infinitely many directions giving rise to a periodic trajectory.

This last fact can be proved by considering an n-gon inscribed in
the ellipse of maximal length. In turn, one reproves in this way the
non-constancy of the Betti map (Manin's theorem).
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In the general case of an abelian scheme A — S one expects in
general that 8 has maximal rank:

rk 5 = min(2g,2dim S).

It cannot be the case if £ is contained in a proper subgroup scheme
or if the modular map 4 : S — A, associated to the family
A — S has lower dimensional image.

We prove that under some ‘generically satisfied’ conditions on the
family A — S, not involving the section, the Betti map of every
section not contained in a proper subgroup scheme has maximal
rank.
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it into a symplectic basis (w1, . ..,wg, M1, ..., 7g) of His(A/S)
We fix a symplectic basis (71,...,724) of A.

We set Q :z( ,w-) Q :z( , w')
! f”' T)ij=1,.g 2 f”“fg 1) ij=1,.g"

Q -
= <92>, Z=01-Q%

The g x g matrix Z takes values in the Siegel's space H,, and is a
holomorphic map § — H,.
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Our first result can be stated in terms of the period matrix Z.

Theorem Assume dim S = g, the family has no constant part and
the section is not contained in any proper subgroup scheme. If the
Betti map of the section is not a submersion, then for every vector

€ C& and every § € S, there exists a non-zero derivation
0 € Te(8) such that (Z - ) = 0.

This result can be interpreted in the frame of the Kodaira Spencer
map.
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A complete classification of the cases when the rank of 5 is not
maximal can be achieved in relative dimension < 3. For instance
we proved

Theorem Let us suppose that g < 3. Assume the monodromy of
A — S is Zariski-dense in Sp,, and that & is not contained in a
proper subgroup scheme of A. Then

rk f = 2min(d,,, g), (0.1)

where d,,, is the dimension of the image of modular map
pa:S — Ag.
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Let A — Moogi2 = (P1\ {0,1,00})% 1 be the jacobian of the
universal hyperelliptic curve of genus g > 0, defined by the
equation

¥ =x(x —1)(x —s51) - (x — s2g-1).

By Torelli's theorem, one has dim p4(S) =2g — 1.

Theorem Let S be a finite cover of (P*\ {0,1,00})%6 1,
&£ :S — A be any non-torsion section. After replacing S by a
suitable dense Zariski-open subset, 3 becomes a submersion.
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A real case in the hyperelliptic context.

y? = (= 1)(x = s1) - (x — s2g).

For s1,..., 55 pairwise distinct and distinct from +£1 the affine
curve is smooth and has two points in the completion A? < P?.
Let oo™, 00™ be these points, and £ = (s, ..., Sog) be the class
of [0o™] — [0o™] in the jacobian.

Theorem The set of real points s = (s1,...,S) € R* such that
&(s) is torsion is dense in the euclidean topology.



The Kodaira-Spencer map



The Kodaira-Spencer map

In a family of algebraic varieties parametrized by a basis S:

xs



The Kodaira-Spencer map

In a family of algebraic varieties parametrized by a basis S:

xs

fix a point s € § and its fibre X.



The Kodaira-Spencer map
In a family of algebraic varieties parametrized by a basis S:

xs

fix a point s € § and its fibre X.

From the differential of f one obtains the exact sequence of
sheaves on X:



The Kodaira-Spencer map
In a family of algebraic varieties parametrized by a basis S:

xs

fix a point s € § and its fibre X.

From the differential of f one obtains the exact sequence of
sheaves on X:

0— Tx, = Ty, — f*(T5)|Xs — 0.



The Kodaira-Spencer map
In a family of algebraic varieties parametrized by a basis S:

xs

fix a point s € § and its fibre X.

From the differential of f one obtains the exact sequence of
sheaves on X:

0— Tx, = Ty, — f*(T5)|Xs — 0.

The associated map

Or : HO(Xs, £*(Ts)v,) = Ts(s) = HY(Xs, Ta,)



The Kodaira-Spencer map
In a family of algebraic varieties parametrized by a basis S:

xs

fix a point s € § and its fibre X.

From the differential of f one obtains the exact sequence of
sheaves on X:

0— Tx, = Ty, — f*(T5)|Xs — 0.

The associated map

Or : HO(Xs, £*(Ts)v,) = Ts(s) = HY(Xs, Ta,)

is called the Kodaira-Spencer map of the family

xfs
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In the case of an abelian scheme with principle polarization, there
are several presentations:

04: Ts® (Lie A)” — Lie A

04: Ts — End(LieA)"

Identifying Lie A and Lie A" via polarization, we obtain that 04 5 is
a symmetric endomorphism of (Lie A)Y.
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where Ry, Sy, Ty, Uy are matrices with Os(S).
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Viewing the Kodaira-Spencer map as a morphism
04: Ts® (Lie A)Y — Lie A

the symmetric matrix Ty is the matrix of the Kodaira Spencer map
with respect to the basis (w1, ...,wg) of (Lie.A)" and n1,...,7g
of Lie A.

In the case dim S = g, the condition in our result can be rephrased:

If the Betti map does not have generically maximal rank 2g, then

Vw J0#0, 6Oy(w)=0.



