Colmez Conjecture in Average

Shou-Wu Zhang

Princeton University

May 28, 2015

Shou-Wu Zhang Colmez Conjecture in Average

< 🗗 🕨

-≣->

A/K: abelian variety defined over a number field of dim g.

▲圖▶ ▲屋▶ ▲屋▶

A/K: abelian variety defined over a number field of dim g. \mathscr{A}/O_K : unit connected component of the Néron model of A.

(4回) (1日) (日)

A/K: abelian variety defined over a number field of dim g. \mathscr{A}/O_K : unit connected component of the Néron model of A. $\Omega(\mathscr{A}) := \operatorname{Lie}(\mathscr{A})^*$, invariant differential 1-forms on \mathscr{A}/O_K .

Faltings Heights

A/K: abelian variety defined over a number field of dim g. \mathscr{A}/O_K : unit connected component of the Néron model of A. $\Omega(\mathscr{A}) := \operatorname{Lie}(\mathscr{A})^*$, invariant differential 1-forms on \mathscr{A}/O_K . $\omega(\mathscr{A}) := \det \Omega(\mathscr{A})$ with metric for each archimedean place v of K:

$$\|\alpha\|_{\mathbf{v}}^2 := (2\pi)^{-g} \int_{\mathcal{A}_{\mathbf{v}}(\mathbb{C})} |\alpha \wedge \bar{\alpha}|, \qquad \alpha \in \omega(\mathcal{A}_{\mathbf{v}}) = \Gamma(\mathcal{A}_{\mathbf{v}}, \Omega_{\mathcal{A}_{\mathbf{v}}}^g).$$

(4回) (4回) (日)

Faltings Heights

A/K: abelian variety defined over a number field of dim g. \mathscr{A}/O_K : unit connected component of the Néron model of A. $\Omega(\mathscr{A}) := \operatorname{Lie}(\mathscr{A})^*$, invariant differential 1-forms on \mathscr{A}/O_K . $\omega(\mathscr{A}) := \det \Omega(\mathscr{A})$ with metric for each archimedean place v of K:

$$\|\alpha\|_{\nu}^{2} := (2\pi)^{-g} \int_{\mathcal{A}_{\nu}(\mathbb{C})} |\alpha \wedge \bar{\alpha}|, \qquad \alpha \in \omega(\mathcal{A}_{\nu}) = \Gamma(\mathcal{A}_{\nu}, \Omega_{\mathcal{A}_{\nu}}^{g}).$$

 $\bar{\omega}(\mathscr{A}) := (\omega(\mathscr{A}), \|\cdot\|)$

$$\mathsf{Faltings} \ \mathsf{height} \ \mathsf{of} \ \mathcal{A} = \mathit{h}(\mathcal{A}) := rac{1}{[\mathcal{K}:\mathbb{Q}]} \ \mathsf{deg} \, \overline{\omega}(\mathscr{A}).$$

白 と く ヨ と く ヨ と …

Faltings Heights

A/K: abelian variety defined over a number field of dim g. \mathscr{A}/O_K : unit connected component of the Néron model of A. $\Omega(\mathscr{A}) := \operatorname{Lie}(\mathscr{A})^*$, invariant differential 1-forms on \mathscr{A}/O_K . $\omega(\mathscr{A}) := \det \Omega(\mathscr{A})$ with metric for each archimedean place v of K:

$$\|\alpha\|_{\nu}^{2} := (2\pi)^{-g} \int_{A_{\nu}(\mathbb{C})} |\alpha \wedge \bar{\alpha}|, \qquad \alpha \in \omega(A_{\nu}) = \Gamma(A_{\nu}, \Omega_{A_{\nu}}^{g}).$$

 $\bar{\omega}(\mathscr{A}) := (\omega(\mathscr{A}), \|\cdot\|)$

$$\mathsf{Faltings} \ \mathsf{height} \ \mathsf{of} \ \mathcal{A} = \mathit{h}(\mathcal{A}) := rac{1}{[\mathcal{K}:\mathbb{Q}]} \ \mathsf{deg} \, \overline{\omega}(\mathscr{A}).$$

Assume \mathscr{A} is semiabelian, then height is invariant under base change.

白 とう きょう うちょう

E: CM field with totally real subfield *F*, $[F : \mathbb{Q}] = g$.

< 注→ < 注→

A ■

E: CM field with totally real subfield *F*, $[F : \mathbb{Q}] = g$. $\Phi : E \otimes \mathbb{R} \simeq \mathbb{C}^g$ a CM-type.

- 17

★ 문 ► ★ 문 ►

E: CM field with totally real subfield *F*, $[F : \mathbb{Q}] = g$. $\Phi : E \otimes \mathbb{R} \simeq \mathbb{C}^g$ a CM-type. $I \subset O_E$: an ideal.

- 4 同 ト 4 臣 ト 4 臣 ト

$$\begin{split} & E: \ \mathsf{CM} \ \text{field with totally real subfield } F, \ [F:\mathbb{Q}] = g. \\ & \Phi: E \otimes \mathbb{R} \simeq \mathbb{C}^g \ \text{a CM-type.} \\ & I \subset O_E: \ \text{an ideal.} \\ & A_{\Phi,I} = \mathbb{C}^g / \Phi(I), \ \mathsf{CM} \ \text{abelian variety by } O_E. \end{split}$$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

E: CM field with totally real subfield *F*, $[F : \mathbb{Q}] = g$. $\Phi : E \otimes \mathbb{R} \simeq \mathbb{C}^g$ a CM-type.

 $I \subset O_E$: an ideal.

 $A_{\Phi,I} = \mathbb{C}^g / \Phi(I)$, CM abelian variety by O_E .

CM theory: $A_{\Phi,I}$ defined over a # field K with a smooth \mathscr{A}/O_K

- 4 同 ト 4 臣 ト 4 臣 ト

E: CM field with totally real subfield *F*, $[F : \mathbb{Q}] = g$. $\Phi : E \otimes \mathbb{R} \simeq \mathbb{C}^g$ a CM-type. $I \subset O_E$: an ideal. $A_{\Phi,I} = \mathbb{C}^g / \Phi(I)$, CM abelian variety by O_E . CM theory: $A_{\Phi,I}$ defined over a # field *K* with a smooth \mathscr{A} / O_K Colmez: $h(A_{\Phi})$ is independent of *I*; denote $h(A_{\Phi}) = h(\Phi)$

・ 回 と ・ ヨ と ・ ヨ と

E: CM field with totally real subfield F, $[F : \mathbb{Q}] = g$. $\Phi : E \otimes \mathbb{R} \simeq \mathbb{C}^g$ a CM-type. $I \subset O_E$: an ideal. $A_{\Phi,I} = \mathbb{C}^g / \Phi(I)$, CM abelian variety by O_E . CM theory: $A_{\Phi,I}$ defined over a # field K with a smooth \mathscr{A} / O_K Colmez: $h(A_{\Phi})$ is independent of I; denote $h(A_{\Phi}) = h(\Phi)$ Comez conjecture: $h(\Phi)$ is a precise linear combination of logarithmic derivatives of Artin L-functions at 0.

E: CM field with totally real subfield F, $[F : \mathbb{Q}] = g$. $\Phi : E \otimes \mathbb{R} \simeq \mathbb{C}^g$ a CM-type. $I \subset O_E$: an ideal. $A_{\Phi,I} = \mathbb{C}^g / \Phi(I)$, CM abelian variety by O_E . CM theory: $A_{\Phi,I}$ defined over a # field K with a smooth \mathscr{A} / O_K Colmez: $h(A_{\Phi})$ is independent of I; denote $h(A_{\Phi}) = h(\Phi)$ Comez conjecture: $h(\Phi)$ is a precise linear combination of logarithmic derivatives of Artin L-functions at 0. Known cases:

・日本 ・ モン・ ・ モン

E: CM field with totally real subfield *F*, $[F : \mathbb{Q}] = g$. $\Phi : E \otimes \mathbb{R} \simeq \mathbb{C}^g$ a CM-type. $I \subset O_E$: an ideal. $A_{\Phi,I} = \mathbb{C}^g / \Phi(I)$, CM abelian variety by O_E . CM theory: $A_{\Phi,I}$ defined over a # field *K* with a smooth \mathscr{A} / O_K Colmez: $h(A_{\Phi})$ is independent of *I*; denote $h(A_{\Phi}) = h(\Phi)$ Comez conjecture: $h(\Phi)$ is a precise linear combination of logarithmic derivatives of Artin L-functions at 0. Known cases: (1) E/\mathbb{Q} is abelian by Colmez and

・回 ・ ・ ヨ ・ ・ ヨ ・

E: CM field with totally real subfield F, $[F : \mathbb{Q}] = g$.

$$\Phi: E\otimes \mathbb{R}\simeq \mathbb{C}^g$$
 a CM-type.

 $I \subset O_E$: an ideal.

 $A_{\Phi,I} = \mathbb{C}^g / \Phi(I)$, CM abelian variety by O_E .

CM theory: $A_{\Phi,I}$ defined over a # field K with a smooth \mathscr{A}/O_K Colmez: $h(A_{\Phi})$ is independent of I; denote $h(A_{\Phi}) = h(\Phi)$ Comez conjecture: $h(\Phi)$ is a precise linear combination of logarithmic derivatives of Artin L-functions at 0.

Known cases:

(1) E/\mathbb{Q} is abelian by Colmez and

(2) $[E : \mathbb{Q}] = 4$ by Tonghai Yang.

回 と く ヨ と く ヨ と …

d_F : the absolute discriminant of F

 d_F : the absolute discriminant of F $d_{E/F} := d_E/d_F^2$ the norm of the relative discriminant of E/F.

・ 回 と ・ ヨ と ・ ヨ と

 d_F : the absolute discriminant of F $d_{E/F} := d_E/d_F^2$ the norm of the relative discriminant of E/F. $\eta_{E/F}$: the corresponding quadratic character of \mathbb{A}_F^{\times} .

回 と く ヨ と く ヨ と

 d_F : the absolute discriminant of F $d_{E/F} := d_E/d_F^2$ the norm of the relative discriminant of E/F. $\eta_{E/F}$: the corresponding quadratic character of \mathbb{A}_F^{\times} . $L_f(s,\eta)$: the finite part of the completed L-function $L(s,\eta)$.

Theorem (Xinyi Yuan –)

$$\frac{1}{2^{g}}\sum_{\Phi}h(\Phi)=-\frac{1}{2}\frac{L_{f}^{\prime}(\eta_{E/F},0)}{L_{f}(\eta_{E/F},0)}-\frac{1}{4}\log(d_{E/F}d_{F}).$$

where Φ runs through the set of CM types E.

イロン イヨン イヨン イヨン

Remark

When combined with a recent work of Jacob Tsimerman, The above Theorem implies the AO for Siegel moduli \mathscr{A}_{g}

・ロン ・回と ・ヨン ・ヨン

Remark

When combined with a recent work of Jacob Tsimerman, The above Theorem implies the AO for Siegel moduli \mathcal{A}_{g}

Remark

Recently, a proof of the following weaker form of the averaged formula has been announced by Andreatta, Howard, Goren, and Madapusi Pera:

$$\frac{1}{2^g}\sum_{\Phi} h(\Phi) \equiv -\frac{1}{2} \frac{L'_f(\eta_{E/F}, 0)}{L_f(\eta_{E/F}, 0)} \mod \sum_{p|d_E} \mathbb{Q} \log p$$

A (1) < 3</p>

Remark

When combined with a recent work of Jacob Tsimerman, The above Theorem implies the AO for Siegel moduli \mathcal{A}_{g}

Remark

Recently, a proof of the following weaker form of the averaged formula has been announced by Andreatta, Howard, Goren, and Madapusi Pera:

$$\frac{1}{2^g}\sum_{\Phi}h(\Phi)\equiv-\frac{1}{2}\frac{L_f'(\eta_{E/F},0)}{L_f(\eta_{E/F},0)}\quad\text{mod}\ \sum_{p\mid d_E}\mathbb{Q}\log p.$$

Our proof is different than theirs: we use neither high dimensional Shimura varieties nor Borcherds' liftings.

・ロト ・回ト ・ヨト

回 と く ヨ と く ヨ と

$$\ell = \eta(q)^2 \frac{du}{u}, \qquad \eta(q) = q^{1/24} \prod_n (1-q^n).$$

▲圖▶ ★ 国▶ ★ 国▶

$$\ell = \eta(q)^2 \frac{du}{u}, \qquad \eta(q) = q^{1/24} \prod_n (1-q^n).$$

$$h(A) = \frac{1}{12[K:\mathbb{Q}]} \left(\log |\operatorname{disc}(A)| - \sum_{\sigma:K \to \mathbb{C}} \log |\eta(q_{\sigma})^{24} (4\pi \operatorname{Im}\tau_{\sigma})^{6}| \right)$$

(4回) (1日) (日)

$$\ell = \eta(q)^2 \frac{du}{u}, \qquad \eta(q) = q^{1/24} \prod_n (1-q^n).$$

$$h(A) = \frac{1}{12[K:\mathbb{Q}]} \left(\log |\operatorname{disc}(A)| - \sum_{\sigma:K \to \mathbb{C}} \log |\eta(q_{\sigma})^{24} (4\pi \operatorname{Im}\tau_{\sigma})^{6}| \right)$$

When A has CM, apply either Kronecker–Limit or Chowla–Selberg formula.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

If g > 1, there is no natural \mathbb{Q} -sections for $\omega(\mathscr{A})$.

▲圖▶ ▲屋▶ ▲屋▶

If g > 1, there is no natural Q-sections for $\omega(\mathscr{A})$. We will use generating series $\overline{T}(q)$ of arithmetic Hecke divisors on the product $\mathscr{X} \times \mathscr{X}$ of Shimura curves \mathscr{X} over O_F . If g > 1, there is no natural Q-sections for $\omega(\mathscr{A})$. We will use generating series $\overline{T}(q)$ of arithmetic Hecke divisors on the product $\mathscr{X} \times \mathscr{X}$ of Shimura curves \mathscr{X} over O_F . In the case of modular curve $\mathscr{X}(1) = \mathbb{P}^1_{\mathbb{Z}}$, such a series takes form:

$$\overline{T}(q) = \overline{T}_0 \left(1 - \frac{3}{\pi y}\right) + \sum \overline{T}_n q^n, \qquad \overline{T}_0 = -\pi_1^* \overline{\omega} - \pi_2^* \overline{\omega}.$$

If g > 1, there is no natural Q-sections for $\omega(\mathscr{A})$. We will use generating series $\overline{T}(q)$ of arithmetic Hecke divisors on the product $\mathscr{X} \times \mathscr{X}$ of Shimura curves \mathscr{X} over O_F . In the case of modular curve $\mathscr{X}(1) = \mathbb{P}^1_{\mathbb{X}}$, such a series takes form:

$$\overline{T}(q) = \overline{T}_0 \left(1 - \frac{3}{\pi y} \right) + \sum \overline{T}_n q^n, \qquad \overline{T}_0 = -\pi_1^* \overline{\omega} - \pi_2^* \overline{\omega}.$$

This series is proportional the Eisenstein series of weight 2:

$$E_2(\tau) = -\frac{1}{24}\left(1-\frac{3}{\pi y}\right) + \sum_n \sigma_1(n)q^n.$$

 \mathbb{B} : totally definite incoherent quaternion algebra over $\mathbb{A} := \mathbb{A}_{F}$.

< 注→ < 注→ -

 \mathbb{B} : totally definite incoherent quaternion algebra over $\mathbb{A} := \mathbb{A}_F$. $\mathbb{A}_E \hookrightarrow \mathbb{B}$: an \mathbb{A} -embedding

個 と く ヨ と く ヨ と …

B: totally definite incoherent quaternion algebra over $\mathbb{A} := \mathbb{A}_F$. $\mathbb{A}_F \hookrightarrow \mathbb{B}$: an \mathbb{A} -embedding

 $O_{\mathbb{B}}$: maximal order of of \mathbb{B}_{f}^{\times} which contains of \widehat{O}_{E}

★ E ► < E ►</p>

$$\begin{split} \mathbb{B}: \text{ totally definite incoherent quaternion algebra over } \mathbb{A}:=\mathbb{A}_F.\\ \mathbb{A}_E \hookrightarrow \mathbb{B}: \text{ an } \mathbb{A}\text{-embedding} \end{split}$$

 $O_{\mathbb{B}}$: maximal order of of \mathbb{B}_{f}^{\times} which contains of \widehat{O}_{E}

 $\mathscr{X}/O_{\mathsf{F}}$: the Shimura curve defined by \mathbb{B} with level $O_{\mathbb{B}}^{\times}$.

個 と く ヨ と く ヨ と …
Heights of CM points

 \mathbb{B} : totally definite incoherent quaternion algebra over $\mathbb{A} := \mathbb{A}_F$. $\mathbb{A}_F \hookrightarrow \mathbb{B}$: an \mathbb{A} -embedding

 $O_{\mathbb{B}}$: maximal order of of \mathbb{B}_{f}^{\times} which contains of \widehat{O}_{E}

 $\mathscr{X}/O_{\mathsf{F}}$: the Shimura curve defined by \mathbb{B} with level $O_{\mathbb{R}}^{\times}$.

 $\bar{\mathscr{L}}$: the arithmetic Hodge bundle of \mathscr{X} , with Hermitian metrics

 $\|dz\|_{v} = 2 \operatorname{Im}(z), \quad v \mid \infty$

御 と く き と く き と

Heights of CM points

 \mathbb{B} : totally definite incoherent quaternion algebra over $\mathbb{A} := \mathbb{A}_F$. $\mathbb{A}_E \hookrightarrow \mathbb{B}$: an \mathbb{A} -embedding

 $O_{\mathbb{B}}$: maximal order of of \mathbb{B}_{f}^{\times} which contains of \widehat{O}_{E}

 \mathscr{X}/O_F : the Shimura curve defined by \mathbb{B} with level $O_{\mathbb{R}}^{\times}$.

 $\bar{\mathscr{L}}$: the arithmetic Hodge bundle of \mathscr{X} , with Hermitian metrics

$$\|dz\|_{v} = 2 \operatorname{Im}(z), \quad v \mid \infty$$

 $P \in X(E^{\mathrm{ab}})$: a CM point by O_E with the height defined by

$$h_{\bar{\mathscr{L}}}(P) = rac{1}{[F(P):F]} \deg(\bar{\mathscr{L}}|_{\bar{P}}).$$

白 と く ヨ と く ヨ と …

Heights of CM points

 \mathbb{B} : totally definite incoherent quaternion algebra over $\mathbb{A} := \mathbb{A}_F$. $\mathbb{A}_E \hookrightarrow \mathbb{B}$: an \mathbb{A} -embedding

 $O_{\mathbb{B}}$: maximal order of of \mathbb{B}_{f}^{\times} which contains of \widehat{O}_{E}

 \mathscr{X}/O_F : the Shimura curve defined by \mathbb{B} with level $O_{\mathbb{R}}^{\times}$.

 $\bar{\mathscr{L}}:$ the arithmetic Hodge bundle of $\mathscr{X},$ with Hermitian metrics

$$\|dz\|_{v} = 2 \operatorname{Im}(z), \quad v \mid \infty$$

 $P \in X(E^{\mathrm{ab}})$: a CM point by O_E with the height defined by

$$h_{\tilde{\mathscr{L}}}(P) = rac{1}{[F(P):F]} \deg(\tilde{\mathscr{L}}|_{\bar{P}}).$$

 $d_{\mathbb{B}}$: norm of ramification divisor of \mathbb{B} .

Theorem

$$rac{1}{2^{g}}\sum_{\Phi}h(\Phi)=rac{1}{2}h_{\widetilde{\mathscr{L}}}(P)-rac{1}{4}\log(d_{\mathbb{B}}d_{F}).$$

 $K \subset \mathbb{C}$: a number field containing all Galois conjugates of E.

< 注→ < 注→ -

 $K \subset \mathbb{C}$: a number field containing all Galois conjugates of E. \mathscr{A}/O_K : a CM abelian variety by O_E of type Φ .

回 と く ヨ と く ヨ と …

 $K \subset \mathbb{C}$: a number field containing all Galois conjugates of E. \mathscr{A}/O_K : a CM abelian variety by O_E of type Φ .

$$\Omega(\mathscr{A})^{\tau} := \Omega(\mathscr{A}) \otimes_{O_{K} \otimes O_{E}, \tau} O_{K} \quad \forall \tau \in \Phi.$$

回 と く ヨ と く ヨ と …

 $K \subset \mathbb{C}$: a number field containing all Galois conjugates of E. \mathscr{A}/O_K : a CM abelian variety by O_E of type Φ .

$$\Omega(\mathscr{A})^{\tau} := \Omega(\mathscr{A}) \otimes_{O_{K} \otimes O_{E}, \tau} O_{K} \quad \forall \tau \in \Phi.$$

$$\omega(\mathscr{A}) \longrightarrow \bigotimes_{\tau \in \Phi} \Omega(\mathscr{A})^{\tau}.$$

回 と く ヨ と く ヨ と …

 $K \subset \mathbb{C}$: a number field containing all Galois conjugates of E. \mathscr{A}/O_K : a CM abelian variety by O_E of type Φ .

$$\Omega(\mathscr{A})^{\tau} := \Omega(\mathscr{A}) \otimes_{O_{K} \otimes O_{E}, \tau} O_{K} \quad \forall \tau \in \Phi.$$

$$\omega(\mathscr{A}) \longrightarrow \bigotimes_{\tau \in \Phi} \Omega(\mathscr{A})^{\tau}.$$

But there is no natural metrics defined on the individual $\Omega(\mathscr{A})^{\tau}$.

白 と く ヨ と く ヨ と …

 $K \subset \mathbb{C}$: a number field containing all Galois conjugates of E. \mathscr{A}/O_K : a CM abelian variety by O_E of type Φ .

$$\Omega(\mathscr{A})^{\tau} := \Omega(\mathscr{A}) \otimes_{O_{K} \otimes O_{E}, \tau} O_{K} \quad \forall \tau \in \Phi.$$

$$\omega(\mathscr{A}) \longrightarrow \bigotimes_{\tau \in \Phi} \Omega(\mathscr{A})^{\tau}.$$

But there is no natural metrics defined on the individual $\Omega(\mathscr{A})^{\tau}$. To solve this problem, we bring the dual A^{\vee} into the picture to define:

$$\omega(A,\tau) := \Omega(\mathscr{A})^{\tau} \otimes \Omega(\mathscr{A}^{\vee})^{\tau c}.$$

 $K \subset \mathbb{C}$: a number field containing all Galois conjugates of E. \mathscr{A}/O_K : a CM abelian variety by O_E of type Φ .

$$\Omega(\mathscr{A})^{\tau} := \Omega(\mathscr{A}) \otimes_{O_{K} \otimes O_{E}, \tau} O_{K} \quad \forall \tau \in \Phi.$$

$$\omega(\mathscr{A}) \longrightarrow \bigotimes_{\tau \in \Phi} \Omega(\mathscr{A})^{\tau}.$$

But there is no natural metrics defined on the individual $\Omega(\mathscr{A})^{\tau}$. To solve this problem, we bring the dual A^{\vee} into the picture to define:

$$\omega(A,\tau) := \Omega(\mathscr{A})^{\tau} \otimes \Omega(\mathscr{A}^{\vee})^{\tau c}.$$

This line bundle has natural metrics to make $\overline{\omega}(A, \tau)$.

 $K \subset \mathbb{C}$: a number field containing all Galois conjugates of E. \mathscr{A}/O_K : a CM abelian variety by O_E of type Φ .

$$\Omega(\mathscr{A})^{\tau} := \Omega(\mathscr{A}) \otimes_{O_{K} \otimes O_{E}, \tau} O_{K} \quad \forall \tau \in \Phi.$$

$$\omega(\mathscr{A}) \longrightarrow \bigotimes_{\tau \in \Phi} \Omega(\mathscr{A})^{\tau}.$$

But there is no natural metrics defined on the individual $\Omega(\mathscr{A})^{\tau}$. To solve this problem, we bring the dual A^{\vee} into the picture to define:

$$\omega(A,\tau) := \Omega(\mathscr{A})^{\tau} \otimes \Omega(\mathscr{A}^{\vee})^{\tau c}.$$

This line bundle has natural metrics to make $\overline{\omega}(A, \tau)$.

$$h(A, \tau) := \frac{1}{2} \deg(\overline{\omega}(A, \tau)).$$

Estimate

・ロ・ ・回・ ・ヨ・ ・ヨ・

The $h(A, \tau)$ depends only on the pair (Φ, τ) ; denote it as $h(\Phi, \tau)$.

(1日) (日) (日)

The $h(A, \tau)$ depends only on the pair (Φ, τ) ; denote it as $h(\Phi, \tau)$. E_{Φ} : is the reflex field of (E, Φ) .

・回 ・ ・ ヨ ・ ・ ヨ ・

The $h(A, \tau)$ depends only on the pair (Φ, τ) ; denote it as $h(\Phi, \tau)$. E_{Φ} : is the reflex field of (E, Φ) . d_{Φ}, d_{Φ^c} : absolute discriminants of Φ, Φ^c .

- 4 同 ト 4 臣 ト 4 臣 ト

The $h(A, \tau)$ depends only on the pair (Φ, τ) ; denote it as $h(\Phi, \tau)$. E_{Φ} : is the reflex field of (E, Φ) .

 d_{Φ}, d_{Φ^c} : absolute discriminants of Φ, Φ^c .

Theorem

$$h(\Phi) - \sum_{ au \in \Phi} h(\Phi, au) = rac{1}{4[E_{\Phi}:\mathbb{Q}]} \log(d_{\Phi}d_{\Phi^c}).$$

・ロト ・回ト ・ヨト ・ヨト

The $h(A, \tau)$ depends only on the pair (Φ, τ) ; denote it as $h(\Phi, \tau)$. E_{Φ} : is the reflex field of (E, Φ) .

 d_{Φ}, d_{Φ^c} : absolute discriminants of Φ, Φ^c .

Theorem

$$h(\Phi) - \sum_{ au \in \Phi} h(\Phi, au) = rac{1}{4[E_{\Phi}:\mathbb{Q}]} \log(d_{\Phi}d_{\Phi^c}).$$

・ロト ・回ト ・ヨト ・ヨト

 (Φ_1, Φ_2) : a nearby pair of CM types: $|\Phi_1 \cap \Phi_2| = g - 1$.

イロン イ部ン イヨン イヨン 三日

・ロト ・回ト ・ヨト ・ヨト

$$h(\Phi_1, \Phi_2) := \frac{1}{2}(h(\Phi_1, \tau_1) + h(\Phi_2, \tau_2))$$

・ロト ・回ト ・ヨト ・ヨト

$$h(\Phi_1, \Phi_2) := \frac{1}{2}(h(\Phi_1, \tau_1) + h(\Phi_2, \tau_2))$$

Main Theorem is then reduced to:

Theorem

$$h(\Phi_1, \Phi_2) = -\frac{1}{2g} \frac{L'_f(\eta_{E/F}, 0)}{L_f(\eta_{E/F}, 0)} - \frac{1}{4g} \log(d_{E/F}).$$

イロン イヨン イヨン イヨン

$$h(\Phi_1, \Phi_2) := \frac{1}{2}(h(\Phi_1, \tau_1) + h(\Phi_2, \tau_2))$$

Main Theorem is then reduced to:

Theorem

$$h(\Phi_1, \Phi_2) = -\frac{1}{2g} \frac{L'_f(\eta_{E/F}, 0)}{L_f(\eta_{E/F}, 0)} - \frac{1}{4g} \log(d_{E/F}).$$

May replace LHS by $\frac{1}{2}h(A_0, \tau)$ for an abelian variety A_0 with action by O_E and isogenous to $A_{\Phi_1} + A_{\Phi_2}$. Such an A_0 corresponds to a CM-point Q in a unitary Shimura curve Y.

(4回) (日) (日)

 (Φ_1, Φ_2) : a nearby pair of CM types of *E*.

個 と く ヨ と く ヨ と …

 (Φ_1, Φ_2) : a nearby pair of CM types of *E*. E^{\natural} : reflex field of $\Phi_1 + \Phi_2$.

- 4 同 ト 4 臣 ト 4 臣 ト

 (Φ_1, Φ_2) : a nearby pair of CM types of *E*. E^{\natural} : reflex field of $\Phi_1 + \Phi_2$. Y/E^{\natural} : Shimura curve parametrizes (A, i, θ, κ) :

同 とくほ とくほと

 (Φ_1, Φ_2) : a nearby pair of CM types of *E*. E^{\natural} : reflex field of $\Phi_1 + \Phi_2$. Y/E^{\natural} : Shimura curve parametrizes (A, i, θ, κ) :

• A is an abelian variety;

 (Φ_1, Φ_2) : a nearby pair of CM types of *E*. E^{\natural} : reflex field of $\Phi_1 + \Phi_2$. Y/E^{\natural} : Shimura curve parametrizes (A, i, θ, κ) :

- A is an abelian variety;
- *i*: O_E→End(A) is an homomorphism such that the induced action on Lie(A) has the trace tr_{Φ1+Φ2} : E→E^β;

・ 同 ト ・ ヨ ト ・ ヨ ト

 (Φ_1, Φ_2) : a nearby pair of CM types of *E*. E^{\natural} : reflex field of $\Phi_1 + \Phi_2$. Y/E^{\natural} : Shimura curve parametrizes (A, i, θ, κ) :

- A is an abelian variety;
- *i*: O_E→End(A) is an homomorphism such that the induced action on Lie(A) has the trace tr_{Φ1+Φ2} : E→E[↓];
- θ : A→A[∨] is a polarization with Rosatti involution inducing complex conjugation on O_E;

 (Φ_1, Φ_2) : a nearby pair of CM types of *E*. E^{\natural} : reflex field of $\Phi_1 + \Phi_2$. Y/E^{\natural} : Shimura curve parametrizes (A, i, θ, κ) :

- A is an abelian variety;
- *i*: O_E→End(A) is an homomorphism such that the induced action on Lie(A) has the trace tr_{Φ1+Φ2} : E→E^β;
- θ : A→A[∨] is a polarization with Rosatti involution inducing complex conjugation on O_E;
- $\kappa : O_{\mathbb{B}} \longrightarrow \widehat{T}(A)$, a class of homomorphism of \widehat{O}_{E} -modules such that the symplectic form ψ_{θ} on $\widehat{T}(A)$ is given by

$$\psi_{\theta}(\kappa x, \kappa y) = \operatorname{tr}_{\mathbb{B}_f/\widehat{\mathbb{Z}}}(\sqrt{\lambda} x \overline{y}).$$

・ロト ・回ト ・ヨト ・ヨト

$A \longrightarrow Y$: universal abelian variety (after raising level)

白 ト く ヨ ト く ヨ ト

 $A \longrightarrow Y$: universal abelian variety (after raising level) $N := \omega(A, \tau) = \Omega(A)^{\tau} \otimes \Omega(A^{\vee})^{\tau}$

個 と く ヨ と く ヨ と …

 $A \longrightarrow Y$: universal abelian variety (after raising level) $N := \omega(A, \tau) = \Omega(A)^{\tau} \otimes \Omega(A^{\vee})^{\tau}$ Geometric Kodaira–Spencer: $N \simeq \Omega_Y^{\otimes 2}$.

A ₽

 $A \longrightarrow Y$: universal abelian variety (after raising level) $N := \omega(A, \tau) = \Omega(A)^{\tau} \otimes \Omega(A^{\vee})^{\tau}$ Geometric Kodaira–Spencer: $N \simeq \Omega_Y^{\otimes 2}$.

Need to extend this isomorphism to integral models of Y.

 $A \longrightarrow Y$: universal abelian variety (after raising level) $N := \omega(A, \tau) = \Omega(A)^{\tau} \otimes \Omega(A^{\vee})^{\tau}$ Geometric Kodaira–Spencer: $N \simeq \Omega_Y^{\otimes 2}$. Need to extend this isomorphism to integral models of Y. The direct methods of extending the moduli problem to $O_{E^{\natural}}$ usually do not yield a regular integral scheme. $A \longrightarrow Y$: universal abelian variety (after raising level) $N := \omega(A, \tau) = \Omega(A)^{\tau} \otimes \Omega(A^{\vee})^{\tau}$ Geometric Kodaira–Spencer: $N \simeq \Omega_Y^{\otimes 2}$. Need to extend this isomorphism to integral models of Y. The direct methods of extending the moduli problem to $O_{E^{\natural}}$ usually do not yield a regular integral scheme. We will construct integral models using quaternionic Shimura curve X over F, where the regular integral models have been constructed by Carayol, and Čerednik–Drinfeld.

Quaternionic Shimura curves

X: Shimura curve defined by \mathbb{B} with some level.

< 注 → < 注 →

A ■
X: Shimura curve defined by \mathbb{B} with some level. Then X is equipped with following objects:

Quaternionic Shimura curves

X: Shimura curve defined by \mathbb{B} with some level. Then X is equipped with following objects:

() at each archimedean place v of F, there is a Hodge filtration

X: Shimura curve defined by \mathbb{B} with some level. Then X is equipped with following objects:

() at each archimedean place v of F, there is a Hodge filtration

$$M(v) \subset H_1^{dR}(v) \xrightarrow{\nabla} H_1^{dR}(v) \otimes \Omega^1_X.$$

② a local system T of free O_B-module of rank 1 in étale topology.

In this way we have étale sheaf of torsion $O_{\mathbb{B}}$ -modules:

$${\mathcal G}=({\mathcal T}\otimes_{\widehat{{\mathbb Z}}}\widehat{{\mathbb Q}})/{\mathcal T}=igoplus_\wp{\mathcal G}_\wp$$

where the sum runs over the set of finite places \wp of F, and G_{\wp} is an étale sheaf of torsion $O_{\mathbb{B},\wp}$ -modules.

白 ト く ヨ ト く ヨ ト

イロン イヨン イヨン イヨン

3

In terms of universal abelian variety $A \longrightarrow Y$, we have for a place \tilde{v} of \tilde{E} over a place v of F

伺 ト イヨト イヨト

In terms of universal abelian variety $A \longrightarrow Y$, we have for a place \tilde{v} of \tilde{E} over a place v of F

$$H_1^{dR}(v) = f^* H_1^{dR}(A)^{\tau}, \qquad M(v) = f^* \Omega(A^{\vee})_{\widetilde{v}}^{\tau}, \qquad T = f^* \widehat{T}(A)$$

伺 ト イヨト イヨト

In terms of universal abelian variety $A \longrightarrow Y$, we have for a place \tilde{v} of \tilde{E} over a place v of F

$$H_1^{dR}(v) = f^* H_1^{dR}(A)^{\tau}, \qquad M(v) = f^* \Omega(A^{\vee})_{\widetilde{v}}^{\tau}, \qquad T = f^* \widehat{T}(A)$$

where τ is the natural emebedding $F \longrightarrow E^{\natural}$. It follows that

In terms of universal abelian variety $A \longrightarrow Y$, we have for a place \tilde{v} of \tilde{E} over a place v of F

$$H_1^{dR}(v) = f^* H_1^{dR}(A)^{\tau}, \qquad M(v) = f^* \Omega(A^{\vee})_{\widetilde{v}}^{\tau}, \qquad T = f^* \widehat{T}(A)$$

where τ is the natural emebedding $F \longrightarrow E^{\natural}$. It follows that

$$G = f^* A_{I, \text{tor}}, \qquad G_\wp = f^* A_I[\wp^\infty].$$

By Carayol, Drinfeld–Čerednik, there is an integral models \mathscr{X} of X over \mathcal{O}_F , such that locally over \mathscr{X}_{\wp} ,

A ■

< 토 ► < 토 ►

æ

By Carayol, Drinfeld–Čerednik, there is an integral models \mathscr{X} of X over \mathcal{O}_F , such that locally over \mathscr{X}_{\wp} , the G_{\wp} extends to a \wp -divisible $\mathcal{O}_{\mathbb{B},\wp}$ -module \mathscr{G}_{\wp} of height 4 and dimension 2.

★ 注入 ★ 注入

By Carayol, Drinfeld–Čerednik, there is an integral models \mathscr{X} of X over \mathcal{O}_F , such that locally over \mathscr{X}_{\wp} ,

the G_{\wp} extends to a \wp -divisible $O_{\mathbb{B},\wp}$ -module \mathscr{G}_{\wp} of height 4 and dimension 2.

Moreover the formal neighbood of a closed point represents the universal deformation of $\mathscr{G}_{\wp}.$

白 と く ヨ と く ヨ と …

By Carayol, Drinfeld–Čerednik, there is an integral models \mathscr{X} of X over \mathcal{O}_F , such that locally over \mathscr{X}_{\wp} ,

the G_{\wp} extends to a \wp -divisible $O_{\mathbb{B},\wp}$ -module \mathscr{G}_{\wp} of height 4 and dimension 2.

Moreover the formal neighbood of a closed point represents the universal deformation of $\mathscr{G}_{\wp}.$

Over \mathscr{X}_{\wp} , the bundle $M(\wp)$ also extends as the bundles of invariant differentials of Cartier dual \mathscr{G}_{\wp}^{\vee} of \mathscr{G}_{\wp} :

$$\mathscr{M}(\wp) = \Omega(\mathscr{G}_\wp^{\vee}).$$

白 と く ヨ と く ヨ と …

By Carayol, Drinfeld–Čerednik, there is an integral models \mathscr{X} of X over \mathcal{O}_F , such that locally over \mathscr{X}_{\wp} ,

the G_{\wp} extends to a \wp -divisible $O_{\mathbb{B},\wp}$ -module \mathscr{G}_{\wp} of height 4 and dimension 2.

Moreover the formal neighbood of a closed point represents the universal deformation of $\mathscr{G}_{\wp}.$

Over \mathscr{X}_{\wp} , the bundle $M(\wp)$ also extends as the bundles of invariant differentials of Cartier dual \mathscr{G}_{\wp}^{\vee} of \mathscr{G}_{\wp} :

$$\mathscr{M}(\wp) = \Omega(\mathscr{G}_{\wp}^{\vee}).$$

In this way we obtain an extension of the bundle N on \mathscr{X}_U :

$$\mathscr{N}(\wp) = \mathsf{det}\, \mathscr{M}(\wp) \otimes \mathsf{det}\, \mathscr{M}^{ee}(\wp).$$

This bundles also has metrics at archimedean places by Hodge structures.

個 と く ヨ と く ヨ と …

→ Ξ → < Ξ →</p>

æ

A ₽

$$\mathrm{KS}(\tau): N(\tau) \simeq \omega_{X,\tau}^{\otimes 2}$$

at an archimedean place τ of F,

< 用 → < 用 →

$$\mathrm{KS}(\tau): \mathcal{N}(\tau) \simeq \omega_{X,\tau}^{\otimes 2}$$

at an archimedean place τ of F, and an isomorphism

$$\mathrm{KS}(\wp):\omega_{\mathscr{X},\wp}^{\otimes 2}(-D_B)\simeq\mathscr{N}(\wp)$$

where D_B is the ramification divisor on Spec O_F of \mathbb{B} .

$$\mathrm{KS}(\tau): \mathcal{N}(\tau) \simeq \omega_{X,\tau}^{\otimes 2}$$

at an archimedean place τ of F, and an isomorphism

$$\mathrm{KS}(\wp): \omega_{\mathscr{X},\wp}^{\otimes 2}(-D_B) \simeq \mathscr{N}(\wp)$$

where D_B is the ramification divisor on $\operatorname{Spec} O_F$ of \mathbb{B} . In summary, the calculation of $h(\Phi_1, \Phi_2) = \frac{1}{2}h(A_0, \tau)$ is reduced to the calculation of $h_{\overline{\omega}_{\mathscr{X}}}(P)$ at a special point P on \mathscr{X} .