Algebraic flows on Abelian Varieties and Shimura Varieties.

Emmanuel Ullmo, Université Paris-Sud Orsay/ IHES

Rome, May 27, 2015.

Abelian Ax-Lindemann

Let $A = \mathbb{C}^g/\Gamma$ be a complex abelian variety of dimension g. Let $\pi: \mathbb{C}^g \longrightarrow A$ be the uniformizing map.

Abelian Ax-Lindemann

Let $A=\mathbb{C}^g/\Gamma$ be a complex abelian variety of dimension g. Let $\pi:\mathbb{C}^g\longrightarrow A$ be the uniformizing map. A **weakly special subvariety** V of A is a subvariety of the form V=P+B for an abelian subvariety B of A and a point $P\in A(\mathbb{C})$.

Abelian Ax-Lindemann

Let $A=\mathbb{C}^g/\Gamma$ be a complex abelian variety of dimension g. Let $\pi:\mathbb{C}^g\longrightarrow A$ be the uniformizing map. A **weakly special subvariety** V of A is a subvariety of the form V=P+B for an abelian subvariety B of A and a point $P\in A(\mathbb{C})$.

Abelian Ax-Lindemann theorem, (Pila-Zannier)

Theorem

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g . The Zariski closure of $\pi(\Theta)$ is weakly special.

Question

What can be said about the topological closure $\overline{\pi(\Theta)}$ of $\pi(\Theta)$?

Definition

Let $W \subset \mathbb{C}^g$ be a \mathbb{R} -vector space such that $\Gamma_W := \Gamma \cap W$ is a lattice in W. Then W/Γ_W is a real torus and is a closed real analytic subset of A.

Definition

Let $W \subset \mathbb{C}^g$ be a \mathbb{R} -vector space such that $\Gamma_W := \Gamma \cap W$ is a lattice in W. Then W/Γ_W is a real torus and is a closed real analytic subset of A. A real analytic subvariety V of A is said to be **real weakly special** if $V = P + W/\Gamma_W$ for a point P and a real subtorus W/Γ_W of A.

Definition

Let $W \subset \mathbb{C}^g$ be a \mathbb{R} -vector space such that $\Gamma_W := \Gamma \cap W$ is a lattice in W. Then W/Γ_W is a real torus and is a closed real analytic subset of A. A real analytic subvariety V of A is said to be **real weakly special** if $V = P + W/\Gamma_W$ for a point P and a real subtorus W/Γ_W of A. We denote by μ_V the normalized Haar measure on V.

Definition

Let $W\subset \mathbb{C}^g$ be a \mathbb{R} -vector space such that $\Gamma_W:=\Gamma\cap W$ is a lattice in W. Then W/Γ_W is a real torus and is a closed real analytic subset of A. A real analytic subvariety V of A is said to be **real weakly special** if $V=P+W/\Gamma_W$ for a point P and a real subtorus W/Γ_W of A. We denote by μ_V the normalized Haar measure on V.

Conjecture

Let A be a abelian variety of dimension g. Let Θ be a complex irreducible algebraic subvariety of \mathbb{C}^g . Then there exists a finite number Z_1, \ldots, Z_r of real weakly special subvarieties of A such that

$$\overline{\pi(\Theta)} = \pi(\Theta) \cup \bigcup_{k=1}^r Z_i.$$

Let $\omega = \frac{i}{2} \sum_{k=1}^g dz_k \wedge d\overline{z}_k = \sum_{k=1}^g dx_k \wedge dy_k$, and for R > 0 let B(0,R) be the complex ball

$$B(0,R) = \{(z_1,\ldots,z_g) \in \mathbb{C}^g, |z_k| < R\}.$$

Let $\omega = \frac{i}{2} \sum_{k=1}^g dz_k \wedge d\overline{z}_k = \sum_{k=1}^g dx_k \wedge dy_k$, and for R > 0 let B(0,R) be the complex ball

$$B(0,R) = \{(z_1,\ldots,z_g) \in \mathbb{C}^g, |z_k| < R\}.$$

Let Θ be an algebraic subvariety of \mathbb{C}^g of dimension d.

Let $\omega = \frac{i}{2} \sum_{k=1}^g dz_k \wedge d\overline{z}_k = \sum_{k=1}^g dx_k \wedge dy_k$, and for R > 0 let B(0, R) be the complex ball

$$B(0,R) = \{(z_1,\ldots,z_g) \in \mathbb{C}^g, |z_k| < R\}.$$

Let Θ be an algebraic subvariety of \mathbb{C}^g of dimension d. For all R big enough we define the probability measure $\mu_{\Theta,R}$ on \mathbb{C}^g such that for any continuous function f on \mathbb{C}^g ,

$$\mu_{\Theta,R}(f) = \frac{1}{V_R} \int_{\Theta \cap B(0,R)} f \omega^d$$

where $V_R = \int_{\Theta \cap B(0,R)} \omega^d$.

Let $\omega = \frac{i}{2} \sum_{k=1}^g dz_k \wedge d\overline{z}_k = \sum_{k=1}^g dx_k \wedge dy_k$, and for R > 0 let B(0, R) be the complex ball

$$B(0,R) = \{(z_1,\ldots,z_g) \in \mathbb{C}^g, |z_k| < R\}.$$

Let Θ be an algebraic subvariety of \mathbb{C}^g of dimension d. For all R big enough we define the probability measure $\mu_{\Theta,R}$ on \mathbb{C}^g such that for any continuous function f on \mathbb{C}^g ,

$$\mu_{\Theta,R}(f) = \frac{1}{V_R} \int_{\Theta \cap B(0,R)} f \omega^d$$

where $V_R = \int_{\Theta \cap B(0,R)} \omega^d$.

Conjecture

Let A be a abelian variety of dimension g. Let Θ be an irreducible complex algebraic subvariety of \mathbb{C}^g .

Conjecture

Let A be a abelian variety of dimension g. Let Θ be an irreducible complex algebraic subvariety of \mathbb{C}^g . Then there exists a finite number of real weakly special subvarieties Z_1,\ldots,Z_r and some positive real

numbers
$$c_1, \ldots, c_r$$
 with $\sum_{i=1}^r c_i = 1$, such that $\mu_{\Theta,R}$ converges weakly to the measure $\sum_{k=1}^r c_k \mu_{Z_k}$:

Conjecture

Let A be a abelian variety of dimension g. Let Θ be an irreducible complex algebraic subvariety of \mathbb{C}^g . Then there exists a finite number of real weakly special subvarieties Z_1,\ldots,Z_r and some positive real

numbers c_1, \ldots, c_r with $\sum_{i=1}^r c_i = 1$, such that $\mu_{\Theta,R}$ converges weakly to

the measure $\sum_{k=1}^{r} c_k \mu_{Z_k}$: For any continuous function f on A we have

$$\mu_{\Theta,R}(f) \to \sum_{k=1}^r c_k \mu_{Z_k}(f)$$

as $R \to \infty$.

Theorem

Let C be a curve in \mathbb{C}^g . Let C_1, \ldots, C_r be the set of all **branches** of C through all points at infinity.

Theorem

Let C be a curve in \mathbb{C}^g . Let C_1,\ldots,C_r be the set of all **branches** of C through all points at infinity. For all $\alpha\in\{1,\ldots,r\}$ we will define a real weakly special subvariety \mathbb{T}_α . We will call it the **asymptotic Mumford-Tate torus** associated to the branch C_α .

Theorem

Let C be a curve in \mathbb{C}^g . Let C_1,\ldots,C_r be the set of all **branches** of C through all points at infinity. For all $\alpha\in\{1,\ldots,r\}$ we will define a real weakly special subvariety \mathbb{T}_α . We will call it the **asymptotic**

Mumford-Tate torus associated to the branch C_{α} .

(i) We have

$$\overline{\pi(C)} = \pi(C) \cup \bigcup_{\alpha=1}^r \mathbb{T}_{\alpha}.$$

Theorem

Let C be a curve in \mathbb{C}^g . Let C_1,\ldots,C_r be the set of all **branches** of C through all points at infinity. For all $\alpha\in\{1,\ldots,r\}$ we will define a real weakly special subvariety \mathbb{T}_α . We will call it the **asymptotic**

Mumford-Tate torus associated to the branch C_{α} .

(i) We have

$$\overline{\pi(C)} = \pi(C) \cup \bigcup_{\alpha=1}^r \mathbb{T}_{\alpha}.$$

(ii) Let μ_{α} be the canonical probability measure on \mathbb{T}_{α} . There exists positive real numbers c_1, \ldots, c_r such that $\mu_{C,R}$ converges weakly to

$$\sum_{\alpha=1}^{r} c_{\alpha} \mu_{\alpha}.$$

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g .

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g . The **Mumford-Tate group** $MT(\Theta)$ of Θ is defined as the smallest \mathbb{Q} -vector subspace W of $\Gamma \otimes \mathbb{Q}$ such that $\Theta \subset W \otimes \mathbb{R}$.

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g . The **Mumford-Tate group** $MT(\Theta)$ of Θ is defined as the smallest \mathbb{Q} -vector subspace W of $\Gamma \otimes \mathbb{Q}$ such that $\Theta \subset W \otimes \mathbb{R}$. More generally, if $P \in \Theta$. Then we define $MT(\Theta)$ as $\mathrm{MT}(\Theta - P)$.

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g . The **Mumford-Tate group** $MT(\Theta)$ of Θ is defined as the smallest \mathbb{Q} -vector subspace W of $\Gamma \otimes \mathbb{Q}$ such that $\Theta \subset W \otimes \mathbb{R}$. More generally, if $P \in \Theta$. Then we define $MT(\Theta)$ as $\mathrm{MT}(\Theta - P)$. One can check that the definition is independent of the choice of $P \in \Theta$.

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g . The **Mumford-Tate group** $MT(\Theta)$ of Θ is defined as the smallest \mathbb{Q} -vector subspace W of $\Gamma \otimes \mathbb{Q}$ such that $\Theta \subset W \otimes \mathbb{R}$. More generally, if $P \in \Theta$. Then we define $MT(\Theta)$ as $\mathrm{MT}(\Theta - P)$. One can check that the definition is independent of the choice of $P \in \Theta$. Let $W_\Theta := MT(\Theta) \otimes \mathbb{R}$. We denote by \mathbb{T}_Θ the real weakly-special subvariety of A

$$\mathbb{T}_{\Theta} = \pi(P) + W_{\Theta}/\Gamma \cap W_{\Theta}.$$

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g . The **Mumford-Tate group** $MT(\Theta)$ of Θ is defined as the smallest \mathbb{Q} -vector subspace W of $\Gamma \otimes \mathbb{Q}$ such that $\Theta \subset W \otimes \mathbb{R}$. More generally, if $P \in \Theta$. Then we define $MT(\Theta)$ as $\mathrm{MT}(\Theta - P)$. One can check that the definition is independent of the choice of $P \in \Theta$. Let $W_\Theta := MT(\Theta) \otimes \mathbb{R}$. We denote by \mathbb{T}_Θ the real weakly-special subvariety of A

$$\mathbb{T}_{\Theta} = \pi(P) + W_{\Theta}/\Gamma \cap W_{\Theta}.$$

Then \mathbb{T}_{Θ} is independent of P and \mathbb{T}_{Θ} is the smallest real weakly special subvariety of A containing $\pi(\Theta)$. We say that \mathbb{T}_{Θ} is the **Mumford-Tate** torus associated to Θ .

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g . The **Mumford-Tate group** $MT(\Theta)$ of Θ is defined as the smallest \mathbb{Q} -vector subspace W of $\Gamma \otimes \mathbb{Q}$ such that $\Theta \subset W \otimes \mathbb{R}$. More generally, if $P \in \Theta$. Then we define $MT(\Theta)$ as $\mathrm{MT}(\Theta - P)$. One can check that the definition is independent of the choice of $P \in \Theta$. Let $W_\Theta := MT(\Theta) \otimes \mathbb{R}$. We denote by \mathbb{T}_Θ the real weakly-special subvariety of A

$$\mathbb{T}_{\Theta} = \pi(P) + W_{\Theta}/\Gamma \cap W_{\Theta}.$$

Then \mathbb{T}_{Θ} is independent of P and \mathbb{T}_{Θ} is the smallest real weakly special subvariety of A containing $\pi(\Theta)$. We say that \mathbb{T}_{Θ} is the **Mumford-Tate torus** associated to Θ . We write μ_{Θ} for $\mu_{\mathbb{T}_{\Theta}}$.

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g . The **Mumford-Tate group** $MT(\Theta)$ of Θ is defined as the smallest \mathbb{Q} -vector subspace W of $\Gamma \otimes \mathbb{Q}$ such that $\Theta \subset W \otimes \mathbb{R}$. More generally, if $P \in \Theta$. Then we define $MT(\Theta)$ as $\mathrm{MT}(\Theta - P)$. One can check that the definition is independent of the choice of $P \in \Theta$. Let $W_\Theta := MT(\Theta) \otimes \mathbb{R}$. We denote by \mathbb{T}_Θ the real weakly-special subvariety of A

$$\mathbb{T}_{\Theta} = \pi(P) + W_{\Theta}/\Gamma \cap W_{\Theta}.$$

Then \mathbb{T}_{Θ} is independent of P and \mathbb{T}_{Θ} is the smallest real weakly special subvariety of A containing $\pi(\Theta)$. We say that \mathbb{T}_{Θ} is the **Mumford-Tate torus** associated to Θ . We write μ_{Θ} for $\mu_{\mathbb{T}_{\Theta}}$.

Remark

Let Θ be an irreducible complex algebraic subvariety of \mathbb{C}^g . Then $\overline{\pi(\Theta)} \subset \mathbb{T}_{\Theta}$.

Definition

Let Θ be an irreducible algebraic subvariety of \mathbb{C}^g containing the origin O of \mathbb{C}^g . The **Mumford-Tate group** $MT(\Theta)$ of Θ is defined as the smallest \mathbb{Q} -vector subspace W of $\Gamma \otimes \mathbb{Q}$ such that $\Theta \subset W \otimes \mathbb{R}$. More generally, if $P \in \Theta$. Then we define $MT(\Theta)$ as $\mathrm{MT}(\Theta - P)$. One can check that the definition is independent of the choice of $P \in \Theta$. Let $W_\Theta := MT(\Theta) \otimes \mathbb{R}$. We denote by \mathbb{T}_Θ the real weakly-special subvariety of A

$$\mathbb{T}_{\Theta} = \pi(P) + W_{\Theta}/\Gamma \cap W_{\Theta}.$$

Then \mathbb{T}_{Θ} is independent of P and \mathbb{T}_{Θ} is the smallest real weakly special subvariety of A containing $\pi(\Theta)$. We say that \mathbb{T}_{Θ} is the **Mumford-Tate torus** associated to Θ . We write μ_{Θ} for $\mu_{\mathbb{T}_{\Theta}}$.

Remark

Let Θ be an irreducible complex algebraic subvariety of \mathbb{C}^g . Then $\overline{\pi(\Theta)} \subset \mathbb{T}_{\Theta}$. When do we have $\overline{\pi(\Theta)} = \mathbb{T}_{\Theta}$?

Let C be a curve in \mathbb{C}^g .

Let C be a curve in \mathbb{C}^g . Let C^* be the Zariski closure of C in $\mathbb{P}^1(\mathbb{C})^g$.

Let C be a curve in \mathbb{C}^g . Let C^* be the Zariski closure of C in $\mathbb{P}^1(\mathbb{C})^g$. Then C^*-C is a finite set of points $\{P_1,\ldots,P_s\}$.

Let C be a curve in \mathbb{C}^g . Let C^* be the Zariski closure of C in $\mathbb{P}^1(\mathbb{C})^g$. Then $C^* - C$ is a finite set of points $\{P_1, \ldots, P_s\}$. Let C_α be a branch of C near a point P_i .

Let C be a curve in \mathbb{C}^g . Let C^* be the Zariski closure of C in $\mathbb{P}^1(\mathbb{C})^g$. Then C^*-C is a finite set of points $\{P_1,\ldots,P_s\}$. Let C_α be a branch of C near a point P_i . There exists a smallest real affine subspace $Q_\alpha+W_\alpha$ such that $W_\alpha\cap\Gamma$ is a lattice in W_α and such that C_α is asymptotic to $Q_\alpha+W_\alpha$.

Let C be a curve in \mathbb{C}^g . Let C^* be the Zariski closure of C in $\mathbb{P}^1(\mathbb{C})^g$. Then C^*-C is a finite set of points $\{P_1,\ldots,P_s\}$. Let C_α be a branch of C near a point P_i . There exists a smallest real affine subspace $Q_\alpha+W_\alpha$ such that $W_\alpha\cap\Gamma$ is a lattice in W_α and such that C_α is asymptotic to $Q_\alpha+W_\alpha$.

Definition

Let $\mathbb{T}'_{\alpha}:=W_{\alpha}/\Gamma\cap W_{\alpha}$ and $\mathbb{T}_{\alpha}:=\pi(Q_{\alpha})+\mathbb{T}'_{\alpha}$. We say that \mathbb{T}_{α} is the asymptotic Mumford-Tate torus associated to C_{α}

Let C be a curve in \mathbb{C}^g . Let C^* be the Zariski closure of C in $\mathbb{P}^1(\mathbb{C})^g$. Then C^*-C is a finite set of points $\{P_1,\ldots,P_s\}$. Let C_α be a branch of C near a point P_i . There exists a smallest real affine subspace $Q_\alpha+W_\alpha$ such that $W_\alpha\cap\Gamma$ is a lattice in W_α and such that C_α is asymptotic to $Q_\alpha+W_\alpha$.

Definition

Let $\mathbb{T}'_{\alpha}:=W_{\alpha}/\Gamma\cap W_{\alpha}$ and $\mathbb{T}_{\alpha}:=\pi(Q_{\alpha})+\mathbb{T}'_{\alpha}$. We say that \mathbb{T}_{α} is the asymptotic Mumford-Tate torus associated to C_{α}

Lemma

(a)
$$\overline{\pi(C_{\alpha})} - C_{\alpha} \subset \mathbb{T}_{\alpha}$$
.

Let C be a curve in \mathbb{C}^g . Let C^* be the Zariski closure of C in $\mathbb{P}^1(\mathbb{C})^g$. Then C^*-C is a finite set of points $\{P_1,\ldots,P_s\}$. Let C_α be a branch of C near a point P_i . There exists a smallest real affine subspace $Q_\alpha+W_\alpha$ such that $W_\alpha\cap\Gamma$ is a lattice in W_α and such that C_α is asymptotic to $Q_\alpha+W_\alpha$.

Definition

Let $\mathbb{T}'_{\alpha}:=W_{\alpha}/\Gamma\cap W_{\alpha}$ and $\mathbb{T}_{\alpha}:=\pi(Q_{\alpha})+\mathbb{T}'_{\alpha}$. We say that \mathbb{T}_{α} is the asymptotic Mumford-Tate torus associated to C_{α}

Lemma

- (a) $\overline{\pi(C_{\alpha})} C_{\alpha} \subset \mathbb{T}_{\alpha}$.
- (b) $\mathbb{T}_{\alpha} \subset \mathbb{T}_{C}$.

Asymptotic Mumford-Tate Tori for curves.

Let C be a curve in \mathbb{C}^g . Let C^* be the Zariski closure of C in $\mathbb{P}^1(\mathbb{C})^g$. Then C^*-C is a finite set of points $\{P_1,\ldots,P_s\}$. Let C_α be a branch of C near a point P_i . There exists a smallest real affine subspace $Q_\alpha+W_\alpha$ such that $W_\alpha\cap\Gamma$ is a lattice in W_α and such that C_α is asymptotic to $Q_\alpha+W_\alpha$.

Definition

Let $\mathbb{T}'_{\alpha}:=W_{\alpha}/\Gamma\cap W_{\alpha}$ and $\mathbb{T}_{\alpha}:=\pi(Q_{\alpha})+\mathbb{T}'_{\alpha}$. We say that \mathbb{T}_{α} is the asymptotic Mumford-Tate torus associated to C_{α}

Lemma

- (a) $\overline{\pi(C_{\alpha})} C_{\alpha} \subset \mathbb{T}_{\alpha}$.
- (b) $\mathbb{T}_{\alpha} \subset \mathbb{T}_{C}$.
- (c) $\overline{\pi(C)} \subset \pi(C) \cup \bigcup_{\alpha=1}^r \mathbb{T}_{\alpha}$.

Let C_{α} be an infinite branch of C, \mathbb{T}_{α} be the associated asymptotic Mumford-Tate torus and μ_{α} be the canonical measure on \mathbb{T}_{α} .

Let C_{α} be an infinite branch of C, \mathbb{T}_{α} be the associated asymptotic Mumford-Tate torus and μ_{α} be the canonical measure on \mathbb{T}_{α} . For R big enough, let $\mu_{\alpha,R}$ be the probability measure on A such that for all continuous function f on A, we have

$$\mu_{\alpha,R}(f) = \frac{\int_{C_{\alpha} \cap B(O,R)} f \omega}{\int_{C_{\alpha} \cap B(O,R)} \omega}.$$

Let C_{α} be an infinite branch of C, \mathbb{T}_{α} be the associated asymptotic Mumford-Tate torus and μ_{α} be the canonical measure on \mathbb{T}_{α} . For R big enough, let $\mu_{\alpha,R}$ be the probability measure on A such that for all continuous function f on A, we have

$$\mu_{\alpha,R}(f) = \frac{\int_{C_{\alpha} \cap B(O,R)} f\omega}{\int_{C_{\alpha} \cap B(O,R)} \omega}.$$

The main result is a consequence of the previous lemma and

Theorem

 $\mu_{\alpha,R}$ weakly converges to μ_{α} as R tends to ∞ .

The case of W a complex linear subspace of \mathbb{C}^g is a simple application of Weyl's criterion. In this case $\overline{\pi(W)} = \mathbb{T}_W$ and $\mu_{Z,R} \to \mu_W$.

The case of W a complex linear subspace of \mathbb{C}^g is a simple application of Weyl's criterion. In this case $\overline{\pi(W)} = \mathbb{T}_W$ and $\mu_{Z,R} \to \mu_W$.

Real tori are needed

Let V be a \mathbb{C} -vector space of dimension 2 and (e_1, e_2) be a \mathbb{C} -basis of V.

The case of W a complex linear subspace of \mathbb{C}^g is a simple application of Weyl's criterion. In this case $\overline{\pi(W)} = \mathbb{T}_W$ and $\mu_{Z,R} \to \mu_W$.

Real tori are needed

Let V be a \mathbb{C} -vector space of dimension 2 and (e_1,e_2) be a \mathbb{C} -basis of V. Let Γ be the lattice

$$\Gamma := \mathbb{Z} e_1 \oplus \mathbb{Z} \sqrt{-1} e_1 \oplus \mathbb{Z} e_2 \oplus \mathbb{Z} \sqrt{-5} e_2$$

The case of W a complex linear subspace of \mathbb{C}^g is a simple application of Weyl's criterion. In this case $\overline{\pi(W)} = \mathbb{T}_W$ and $\mu_{Z,R} \to \mu_W$.

Real tori are needed

Let V be a \mathbb{C} -vector space of dimension 2 and (e_1,e_2) be a \mathbb{C} -basis of V. Let Γ be the lattice

$$\Gamma := \mathbb{Z} e_1 \oplus \mathbb{Z} \sqrt{-1} e_1 \oplus \mathbb{Z} e_2 \oplus \mathbb{Z} \sqrt{-5} e_2$$

Then $A:=A/\Gamma$ is an abelian variety of dimension 2. Let $W:=\mathbb{C}(e_1+e_2)$ of V.

The case of W a complex linear subspace of \mathbb{C}^g is a simple application of Weyl's criterion. In this case $\overline{\pi(W)} = \mathbb{T}_W$ and $\mu_{Z,R} \to \mu_W$.

Real tori are needed

Let V be a \mathbb{C} -vector space of dimension 2 and (e_1,e_2) be a \mathbb{C} -basis of V. Let Γ be the lattice

$$\Gamma := \mathbb{Z} e_1 \oplus \mathbb{Z} \sqrt{-1} e_1 \oplus \mathbb{Z} e_2 \oplus \mathbb{Z} \sqrt{-5} e_2$$

Then $A:=A/\Gamma$ is an abelian variety of dimension 2. Let $W:=\mathbb{C}(e_1+e_2)$ of V.

$$MT(W) = \mathbb{Q}(e_1 + e_2) + \mathbb{Q}\sqrt{-1}e_1 + \mathbb{Q}\sqrt{-5}e_2$$

The case of W a complex linear subspace of \mathbb{C}^g is a simple application of Weyl's criterion. In this case $\overline{\pi(W)} = \mathbb{T}_W$ and $\mu_{Z,R} \to \mu_W$.

Real tori are needed

Let V be a \mathbb{C} -vector space of dimension 2 and (e_1,e_2) be a \mathbb{C} -basis of V. Let Γ be the lattice

$$\Gamma:=\mathbb{Z} \textit{e}_{1}\oplus\mathbb{Z}\sqrt{-1}\textit{e}_{1}\oplus\mathbb{Z}\textit{e}_{2}\oplus\mathbb{Z}\sqrt{-5}\textit{e}_{2}$$

Then $A:=A/\Gamma$ is an abelian variety of dimension 2. Let $W:=\mathbb{C}(e_1+e_2)$ of V.

$$MT(W) = \mathbb{Q}(e_1 + e_2) + \mathbb{Q}\sqrt{-1}e_1 + \mathbb{Q}\sqrt{-5}e_2$$

and

$$MT(W)\otimes \mathbb{R} = \mathbb{R}(e_1+e_2) + \mathbb{R}\sqrt{-1}e_1 + \mathbb{R}\sqrt{-5}e_2.$$

The case of W a complex linear subspace of \mathbb{C}^g is a simple application of Weyl's criterion. In this case $\overline{\pi(W)} = \mathbb{T}_W$ and $\mu_{Z,R} \to \mu_W$.

Real tori are needed

Let V be a \mathbb{C} -vector space of dimension 2 and (e_1,e_2) be a \mathbb{C} -basis of V. Let Γ be the lattice

$$\Gamma := \mathbb{Z} e_1 \oplus \mathbb{Z} \sqrt{-1} e_1 \oplus \mathbb{Z} e_2 \oplus \mathbb{Z} \sqrt{-5} e_2$$

Then $A:=A/\Gamma$ is an abelian variety of dimension 2. Let $W:=\mathbb{C}(e_1+e_2)$ of V.

$$MT(W) = \mathbb{Q}(e_1 + e_2) + \mathbb{Q}\sqrt{-1}e_1 + \mathbb{Q}\sqrt{-5}e_2$$

and

$$MT(W)\otimes \mathbb{R}=\mathbb{R}(e_1+e_2)+\mathbb{R}\sqrt{-1}e_1+\mathbb{R}\sqrt{-5}e_2.$$

As a consequence $MT(W) \otimes \mathbb{R}/\Gamma \cap MT(W) \otimes \mathbb{R}$ is a real torus of real dimension 3.

The case of W a complex linear subspace of \mathbb{C}^g is a simple application of Weyl's criterion. In this case $\overline{\pi(W)} = \mathbb{T}_W$ and $\mu_{Z,R} \to \mu_W$.

Real tori are needed

Let V be a \mathbb{C} -vector space of dimension 2 and (e_1,e_2) be a \mathbb{C} -basis of V. Let Γ be the lattice

$$\Gamma := \mathbb{Z} e_1 \oplus \mathbb{Z} \sqrt{-1} e_1 \oplus \mathbb{Z} e_2 \oplus \mathbb{Z} \sqrt{-5} e_2$$

Then $A := A/\Gamma$ is an abelian variety of dimension 2. Let $W := \mathbb{C}(e_1 + e_2)$ of V.

$$MT(W) = \mathbb{Q}(e_1 + e_2) + \mathbb{Q}\sqrt{-1}e_1 + \mathbb{Q}\sqrt{-5}e_2$$

and

$$MT(W)\otimes \mathbb{R} = \mathbb{R}(e_1 + e_2) + \mathbb{R}\sqrt{-1}e_1 + \mathbb{R}\sqrt{-5}e_2.$$

As a consequence $MT(W) \otimes \mathbb{R}/\Gamma \cap MT(W) \otimes \mathbb{R}$ is a real torus of real dimension 3.

This shows that we can't expect that in the conjecture 2 that the analytic closure of $\pi(W)$ has a complex structure.

Proposition

Let $n \geq 3$ be an integer. Let $C \in \mathbb{C}^2$ be the hyperelliptic curve with equation

$$Z_2^2 = Z_1^n + a_{n-1}Z_1^{n-1} + \cdots + a_0.$$

Proposition

Let $n \geq 3$ be an integer. Let $C \in \mathbb{C}^2$ be the hyperelliptic curve with equation

$$Z_2^2 = Z_1^n + a_{n-1}Z_1^{n-1} + \cdots + a_0.$$

Then for any abelian surface $A=\mathbb{C}^2/\Gamma$ we have $\overline{\pi(C)}=A$ and $\mu_{C,R}\to\mu_A$ as $R\to\infty$.

Proposition

Let $n \geq 3$ be an integer. Let $C \in \mathbb{C}^2$ be the hyperelliptic curve with equation

$$Z_2^2 = Z_1^n + a_{n-1}Z_1^{n-1} + \cdots + a_0.$$

Then for any abelian surface $A=\mathbb{C}^2/\Gamma$ we have $\overline{\pi(C)}=A$ and $\mu_{C,R}\to\mu_A$ as $R\to\infty$. In this case $\mathbb{T}_C=A=\mathbb{T}_\alpha$ for all infinite branches C_α of C.

Let C be the hyperbole $Z_1Z_2=1$ in \mathbb{C}^2 .

Let C be the hyperbole $Z_1Z_2=1$ in \mathbb{C}^2 .

case 1.

Let $\Gamma=\mathbb{Z}[\sqrt{-1}]\oplus\mathbb{Z}[\sqrt{-1}]\subset\mathbb{C}^2$ and $A=E\times E=\mathbb{C}^2/\Gamma$.

Let C be the hyperbole $Z_1Z_2=1$ in \mathbb{C}^2 .

case 1.

Let
$$\Gamma=\mathbb{Z}[\sqrt{-1}]\oplus\mathbb{Z}[\sqrt{-1}]\subset\mathbb{C}^2$$
 and $A=E\times E=\mathbb{C}^2/\Gamma.$ Then

$$\overline{\pi(C)} = \pi(C) \cup E \times \{0\} \cup \{0\} \times E,$$

and

$$\mu_{C,R} \to \frac{1}{2} (\mu_{E \times \{0\}} + \mu_{\{0\} \times E}).$$

Let C be the hyperbole $Z_1Z_2=1$ in \mathbb{C}^2 .

case 1.

Let
$$\Gamma=\mathbb{Z}[\sqrt{-1}]\oplus\mathbb{Z}[\sqrt{-1}]\subset\mathbb{C}^2$$
 and $A=E\times E=\mathbb{C}^2/\Gamma$. Then
$$\overline{\pi(C)}=\pi(C)\cup E\times\{0\}\cup\{0\}\times E,$$

and

$$\mu_{C,R} \to \frac{1}{2} (\mu_{E \times \{0\}} + \mu_{\{0\} \times E}).$$

In this case $\mathbb{T}_C=A$, with two branches C_1 near $(0,\infty)$ and C_2 near $(\infty,0)$. Then $\mathbb{T}_1=\{0\}\times E$ and $\mathbb{T}_2=E\times\{0\}$.

Let C be the hyperbole $Z_1Z_2=1$ in \mathbb{C}^2 .

case 1.

Let $\Gamma=\mathbb{Z}[\sqrt{-1}]\oplus\mathbb{Z}[\sqrt{-1}]\subset\mathbb{C}^2$ and $A=E\times E=\mathbb{C}^2/\Gamma$. Then $\overline{\pi(C)}=\pi(C)\cup E\times\{0\}\cup\{0\}\times E,$

and

$$\mu_{C,R} \to \frac{1}{2} (\mu_{E \times \{0\}} + \mu_{\{0\} \times E}).$$

In this case $\mathbb{T}_C = A$, with two branches C_1 near $(0,\infty)$ and C_2 near $(\infty,0)$. Then $\mathbb{T}_1 = \{0\} \times E$ and $\mathbb{T}_2 = E \times \{0\}$.

case 2.

If $\Gamma \subset \mathbb{C}^2$ is such that the dual lattice $\widehat{\Gamma}$ of Γ contains no element of the form (0,b) or of the form (a,0), then $\overline{\pi(C)} = \mathbb{C}^2/\Gamma = A$ and $\mu_{C,R} \to \mu_A$. In this case $\mathbb{T}_C = \mathbb{T}_1 = \mathbb{T}_2 = A$.

1.<,> canonical hermitian scalar product on $\mathbb{C}^{\it g}.$

- 1. <, > canonical hermitian scalar product on \mathbb{C}^g .
- 2. (,) := Re(< , >) the real part of < , >.

- 1. <, > canonical hermitian scalar product on \mathbb{C}^g .
- 2. (,) := Re(<,>) the real part of <,>.
- 3. For any $\theta \in \mathbb{C}^g$, we denote by χ_θ the function on \mathbb{C}^g such that $\chi_\theta(z) = \exp(2\pi i(\theta, z))$.

- 1. <, > canonical hermitian scalar product on \mathbb{C}^g .
- 2. (,) := Re(<,>) the real part of <,>.
- 3. For any $\theta \in \mathbb{C}^g$, we denote by χ_θ the function on \mathbb{C}^g such that $\chi_\theta(z) = \exp(2\pi i(\theta, z))$.
- 4. $\widehat{\Gamma} = \{\theta \in \mathbb{C}^g \text{ such that for all } \gamma \in \Gamma, \ (\theta, \gamma) \in \mathbb{Z} \}$ the dual lattice. Then $\widehat{\Gamma} \simeq X^*(A)$ through $\theta \mapsto \chi_{\theta}$.

- 1. <, > canonical hermitian scalar product on \mathbb{C}^g .
- 2. (,) := Re(<,>) the real part of <,>.
- 3. For any $\theta \in \mathbb{C}^g$, we denote by χ_θ the function on \mathbb{C}^g such that $\chi_\theta(z) = \exp(2\pi i(\theta, z))$.
- 4. $\widehat{\Gamma} = \{\theta \in \mathbb{C}^g \text{ such that for all } \gamma \in \Gamma, \ (\theta, \gamma) \in \mathbb{Z} \}$ the dual lattice. Then $\widehat{\Gamma} \simeq X^*(A)$ through $\theta \mapsto \chi_{\theta}$.

Let C_{α} be an infinite branch of C. By Weyl's lemma the theorem is equivalent to showing that for all θ in $\widehat{\Gamma}$,

$$\mu_{\alpha,R}(\chi_{\theta}) \to \mu_{\alpha}(\chi_{\theta}).$$

Let ϕ be a function of a complex variable z with a Puiseux expansion given for z big enough by

$$\phi(z) = \sum_{n \geq 0} a_n z^{\alpha - \frac{n}{e}}$$

with $e \in \mathbb{N}^*$ and $0 \le \alpha \in \mathbb{Q}$.

Let ϕ be a function of a complex variable z with a Puiseux expansion given for z big enough by

$$\phi(z) = \sum_{n \geq 0} a_n z^{\alpha - \frac{n}{e}}$$

with $e \in \mathbb{N}^*$ and $0 \le \alpha \in \mathbb{Q}$. Let

$$J_{\phi}(R) = \int_{A < |z| < R} \exp(i \operatorname{Re}(\phi(z))) \frac{i dz \wedge d\overline{z}}{2R^2}.$$
 (1)

Let ϕ be a function of a complex variable z with a Puiseux expansion given for z big enough by

$$\phi(z) = \sum_{n \geq 0} a_n z^{\alpha - \frac{n}{e}}$$

with $e \in \mathbb{N}^*$ and $0 \le \alpha \in \mathbb{Q}$. Let

$$J_{\phi}(R) = \int_{A < |z| < R} \exp(i \operatorname{Re}(\phi(z))) \frac{i dz \wedge d\overline{z}}{2R^2}.$$
 (1)

Theorem

(i) If $\alpha > 0$, or $\alpha = 0$ and $a_0 = 0$, then

$$J_{\phi}(R)\longrightarrow 0$$

as $R \to \infty$.

Let ϕ be a function of a complex variable z with a Puiseux expansion given for z big enough by

$$\phi(z) = \sum_{n \geq 0} a_n z^{\alpha - \frac{n}{e}}$$

with $e \in \mathbb{N}^*$ and $0 \le \alpha \in \mathbb{Q}$.

Let

$$J_{\phi}(R) = \int_{A < |z| < R} \exp(i \operatorname{Re}(\phi(z))) \frac{i dz \wedge d\overline{z}}{2R^2}.$$
 (1)

Theorem

(i) If $\alpha > 0$, or $\alpha = 0$ and $a_0 = 0$, then

$$J_{\phi}(R)\longrightarrow 0$$

as $R \to \infty$.

(ii) If $\alpha = 0$ and $a_0 \neq 0$, then

$$J_{\phi}(R) \longrightarrow \pi \exp(i \operatorname{Re}(a_0))$$

Let ϕ be a function of a complex variable z with a Puiseux expansion given for z big enough by

$$\phi(z) = \sum_{n \geq 0} a_n z^{\alpha - \frac{n}{e}}$$

with $e \in \mathbb{N}^*$ and $0 \le \alpha \in \mathbb{Q}$.

Let

$$J_{\phi}(R) = \int_{A < |z| < R} \exp(i \operatorname{Re}(\phi(z))) \frac{i dz \wedge d\overline{z}}{2R^2}.$$
 (1)

Theorem

(i) If $\alpha > 0$, or $\alpha = 0$ and $a_0 = 0$, then

$$J_{\phi}(R)\longrightarrow 0$$

as $R \to \infty$.

(ii) If $\alpha = 0$ and $a_0 \neq 0$, then

$$J_{\phi}(R) \longrightarrow \pi \exp(i \operatorname{Re}(a_0))$$

Lemma Let $k \ge 2$ be an integer,

Lemma

Let $k \ge 2$ be an integer, there exists a constant $C = C_k$ such that for any real numbers a < b, any functions $f \in C^k([a,b])$ such that $|f^{(k)}(x)| > \lambda > 0$ on [a,b] and any function $\psi \in C^1[a,b]$

$$|\int_{a}^{b} \exp(if(x))\psi(x)dx| \leq C_{k}(\|\psi\|_{L^{\infty}([a,b])} + \|\psi'\|_{L^{1}([a,b])})\lambda^{-\frac{1}{k}}.$$

Lemma

Let $k \ge 2$ be an integer, there exists a constant $C = C_k$ such that for any real numbers a < b, any functions $f \in C^k([a,b])$ such that $|f^{(k)}(x)| > \lambda > 0$ on [a,b] and any function $\psi \in C^1[a,b]$

$$|\int_{a}^{b} \exp(if(x))\psi(x)dx| \leq C_{k}(\|\psi\|_{L^{\infty}([a,b])} + \|\psi'\|_{L^{1}([a,b])})\lambda^{-\frac{1}{k}}.$$
 (2)

If k = 1 and f' is monotone the conclusion also holds.

Lemma

Let $k \ge 2$ be an integer, there exists a constant $C = C_k$ such that for any real numbers a < b, any functions $f \in C^k([a,b])$ such that $|f^{(k)}(x)| > \lambda > 0$ on [a,b] and any function $\psi \in C^1[a,b]$

$$|\int_{a}^{b} \exp(if(x))\psi(x)dx| \leq C_{k}(\|\psi\|_{L^{\infty}([a,b])} + \|\psi'\|_{L^{1}([a,b])})\lambda^{-\frac{1}{k}}.$$
 (2)

If k = 1 and f' is monotone the conclusion also holds.

Hyperbolic Ax-Lindemann

In this case $G = G^{ad}$, $\mathcal{D} = G(\mathbb{R})/K_{\infty} \subset \mathbb{C}^n$ is a bounded symmetric domain. Γ is an arithmetic lattices and $\pi : \mathcal{D} \to S = \Gamma \backslash \mathcal{D}$.

Hyperbolic Ax-Lindemann

In this case $G = G^{ad}$, $\mathcal{D} = G(\mathbb{R})/K_{\infty} \subset \mathbb{C}^n$ is a bounded symmetric domain. Γ is an arithmetic lattices and $\pi : \mathcal{D} \to S = \Gamma \backslash \mathcal{D}$.

Definition

A subset of \mathcal{D} is said irreducible algebraic if it's a complex analytic component of an intersection of an algebraic subvariety of \mathbb{C}^n with \mathcal{D} .

Hyperbolic Ax-Lindemann

In this case $G = G^{ad}$, $\mathcal{D} = G(\mathbb{R})/\mathcal{K}_{\infty} \subset \mathbb{C}^n$ is a bounded symmetric domain. Γ is an arithmetic lattices and $\pi : \mathcal{D} \to S = \Gamma \backslash \mathcal{D}$.

Definition

A subset of \mathcal{D} is said irreducible algebraic if it's a complex analytic component of an intersection of an algebraic subvariety of \mathbb{C}^n with \mathcal{D} .

Theorem

Hypebolic Ax-Lindemann, K-U-Y and P-T Let Z be an irreducible algebraic subvariety of \mathcal{D} . Then the Zariski closure of $\pi(Z)$ is weakly special.

Definition

A real weakly special subvariety of S is a real analytic subset of S of the form

$$Z = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+.x$$

where H is an algebraic subgroup of G such that the radical of H is unipotent and the real points of a \mathbb{Q} -simple factors of a Levi of H are not compact.

Definition

A real weakly special subvariety of S is a real analytic subset of S of the form

$$Z = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+.x$$

where H is an algebraic subgroup of G such that the radical of H is unipotent and the real points of a \mathbb{Q} -simple factors of a Levi of H are not compact. Moreover $x \in X^+$ is such that $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$ for some Levi subgroup of H.

Definition

A real weakly special subvariety of S is a real analytic subset of S of the form

$$Z = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+.x$$

where H is an algebraic subgroup of G such that the radical of H is unipotent and the real points of a \mathbb{Q} -simple factors of a Levi of H are not compact. Moreover $x \in X^+$ is such that $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$ for some Levi subgroup of H. One can check that Z is independent of the choice of X and L.

Definition

A real weakly special subvariety of S is a real analytic subset of S of the form

$$Z = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+.x$$

where H is an algebraic subgroup of G such that the radical of H is unipotent and the real points of a \mathbb{Q} -simple factors of a Levi of H are not compact. Moreover $x \in X^+$ is such that $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$ for some Levi subgroup of H. One can check that Z is independent of the choice of X and L.

Conjecture

Let Θ be an algebraic subvariety of \mathcal{D} .

Definition

A real weakly special subvariety of S is a real analytic subset of S of the form

$$Z = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+.x$$

where H is an algebraic subgroup of G such that the radical of H is unipotent and the real points of a \mathbb{Q} -simple factors of a Levi of H are not compact. Moreover $x \in X^+$ is such that $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$ for some Levi subgroup of H. One can check that Z is independent of the choice of X and Y.

Conjecture

Let Θ be an algebraic subvariety of \mathcal{D} . Let S' be the smallest weekly special subvariety of S containing $\pi(\Theta)$.

Definition

A real weakly special subvariety of S is a real analytic subset of S of the form

$$Z = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+.x$$

where H is an algebraic subgroup of G such that the radical of H is unipotent and the real points of a \mathbb{Q} -simple factors of a Levi of H are not compact. Moreover $x \in X^+$ is such that $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$ for some Levi subgroup of H. One can check that Z is independent of the choice of X and L.

Conjecture

Let Θ be an algebraic subvariety of \mathcal{D} . Let S' be the smallest weekly special subvariety of S containing $\pi(\Theta)$. If $S' = S'_1 \times S'_2$ is a product of hermitian locally symmetric spaces, assume that the projections of $\pi(\Theta)$ on S'_1 and S'_2 are not closed.

Definition

A real weakly special subvariety of S is a real analytic subset of S of the form

$$Z = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+.x$$

where H is an algebraic subgroup of G such that the radical of H is unipotent and the real points of a \mathbb{Q} -simple factors of a Levi of H are not compact. Moreover $x \in X^+$ is such that $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$ for some Levi subgroup of H. One can check that Z is independent of the choice of X and L.

Conjecture

Let Θ be an algebraic subvariety of \mathcal{D} . Let S' be the smallest weekly special subvariety of S containing $\pi(\Theta)$. If $S' = S'_1 \times S'_2$ is a product of hermitian locally symmetric spaces, assume that the projections of $\pi(\Theta)$ on S'_1 and S'_2 are not closed. Then there exists a finite number of real weakly special subvarieties Z_1, \ldots, Z_r of S', such that

$$\overline{\pi(\Theta)} = \pi(\Theta) \cup \bigcup_{i=1}^r Z_i.$$

Theorem

Let V be a complex totally geodesic subspace of \mathcal{D} . Then $\overline{\pi(V)}$ is real weakly special.

Theorem

Let V be a complex totally geodesic subspace of \mathcal{D} . Then $\overline{\pi(V)}$ is real weakly special.

Proof: ergodic theory (Ratner's theorem).

Theorem

Let V be a complex totally geodesic subspace of \mathcal{D} . Then $\overline{\pi(V)}$ is real weakly special.

Proof: ergodic theory (Ratner's theorem).

Example

Let
$$G=\mathrm{SL}_2 imes\mathrm{SL}_2$$
, $X^+=\mathbb{H} imes\mathbb{H}$ and for some $g\in\mathrm{SL}_2(\mathbb{R})$
$$Z=\{(\tau,g\tau),\tau\in\mathbb{H}\}.$$

Example

Let
$$G=\operatorname{SL}_2 imes\operatorname{SL}_2$$
, $X^+=\mathbb H imes\mathbb H$ and for some $g\in\operatorname{SL}_2(\mathbb R)$
$$Z=\{(\tau,g\tau),\tau\in\mathbb H\}.$$
 Let $\Gamma=\operatorname{SL}_2(\mathbb Z) imes\operatorname{SL}_2(\mathbb Z)$ and
$$\pi\colon\mathbb H imes\mathbb H\longrightarrow\Gamma\backslash X^+=Y_0(1) imes Y_0(1).$$

Example

Let
$$G=\mathrm{SL}_2 imes\mathrm{SL}_2$$
, $X^+=\mathbb{H} imes\mathbb{H}$ and for some $g\in\mathrm{SL}_2(\mathbb{R})$ $Z=\{(au,g au), au\in\mathbb{H}\}.$

Let
$$\Gamma = \operatorname{SL}_2(\mathbb{Z}) \times \operatorname{SL}_2(\mathbb{Z})$$
 and

$$\pi \colon \mathbb{H} \times \mathbb{H} \longrightarrow \Gamma \backslash X^+ = Y_0(1) \times Y_0(1).$$

If $g \in G(\mathbb{Q})$, the closure of $\pi(Z)$ is a special subvariety $Y_0(n)$ for some $n \in \mathbb{N}$.

Example

Let
$$G=\mathrm{SL}_2 imes\mathrm{SL}_2$$
, $X^+=\mathbb{H} imes\mathbb{H}$ and for some $g\in\mathrm{SL}_2(\mathbb{R})$
$$Z=\{(\tau,g\tau),\tau\in\mathbb{H}\}.$$

Let
$$\Gamma = \operatorname{SL}_2(\mathbb{Z}) \times \operatorname{SL}_2(\mathbb{Z})$$
 and

$$\pi \colon \mathbb{H} \times \mathbb{H} \longrightarrow \Gamma \backslash X^+ = Y_0(1) \times Y_0(1).$$

If $g \in G(\mathbb{Q})$, the closure of $\pi(Z)$ is a special subvariety $Y_0(n)$ for some $n \in \mathbb{N}$. If $g \notin G(\mathbb{Q})$, then $\pi(Z)$ is dense in $\Gamma \backslash X^+$.