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Let A= C8/T be a complex abelian variety of dimension g. Let

7w : C& — A be the uniformizing map. A weakly special subvariety V
of A is a subvariety of the form V = P + B for an abelian subvariety B of
A and a point P € A(C).

Abelian Ax-Lindemann theorem, (Pila-Zannier)

Theorem
Let © be an irreducible algebraic subvariety of C&. The Zariski closure of
m(©) is weakly special.

Question
What can be said about the topological closure w(©) of ©(©) ?
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Definition

Let W C C8 be a R-vector space such that 'y =T N W is a lattice in
W. Then W /T is a real torus and is a closed real analytic subset of A.
A real analytic subvariety V' of A is said to be real weakly special if
V =P+ W/lw for a point P and a real subtorus W /Ty of A.

We denote by py the normalized Haar measure on V.

Conjecture
Let A be a abelian variety of dimension g. Let © be a complex irreducible
algebraic subvariety of C&. Then there exists a finite number Zy, . ..,2Z,

of real weakly special subvarieties of A such that

r

(@) =r©)ulJz.

k=1
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Conjecture

Let A be a abelian variety of dimension g. Let © be an irreducible
complex algebraic subvariety of C8. Then there exists a finite number of
real weakly special subvarieties Z1, . ..,Z, and some positive real

r

numbers ¢y, ..., c, with Z ¢; =1, such that g r converges weakly to
i=1
the measure >, _, ckpiz, : For any continuous function f on A we have

por(f) = Y ckpz(f)
k=1

as R — oo.
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Main result

Theorem
Let C be a curve in C8. Let Cy,...,C, be the set of all branches of C
through all points at infinity. For all « € {1,...,r} we will define a real

weakly special subvariety T,. We will call it the asymptotic
Mumford-Tate torus associated to the branch C,.
(i) We have

7(C) =m(C)u U Te.

(ii) Let o be the canonical probability measure on T,. There exists
positive real numbers ci, ..., ¢, such that uc r converges weakly to

r
E Calle-
a=1
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Mumford-Tate tori

Definition

Let © be an irreducible algebraic subvariety of C&8 containing the origin O
of C&. The Mumford-Tate group MT(©) of © is defined as the smallest
Q-vector subspace W of I ® Q such that © C W ® R. More generally, if
P € ©. Then we define MT(©) as MT(© — P). One can check that the

definition is independent of the choice of P € ©. Let Wg := MT(©) @ R.
We denote by Tg the real weakly-special subvariety of A

T@ZW(P)-{- W@/Fﬂ We.

Then Tg is independent of P and Tg is the smallest real weakly special
subvariety of A containing w(©). We say that Tg is the Mumford-Tate
torus associated to ©. We write g for pir,.

Remark
Let © be an irreducible complex algebraic subvariety of C&. Then
m(©) C Te. When do we have n(0©) = Tg ?
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Asymptotic Mumford-Tate Tori for curves.

Let C be a curve in C&. Let C* be the Zariski closure of C in P(C)s.
Then C* — C is a finite set of points {Py,..., Ps}. Let C, be a branch of
C near a point P;. There exists a smallest real affine subspace Q. + W,
such that W, N T is a lattice in W,, and such that C, is asymptotic to
Qo + Wa.

Definition
Let T/, .= W, /TNW, and T, := 7(Qs) + T,,. We say that T, is the
asymptotic Mumford-Tate torus associated to C,

Lemma
() 7(Ca) — Co C T
(b) T, C Te.

(c) 7(C) € 1(C)UUqzn T
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Let C, be an infinite branch of C, T, be the associated asymptotic
Mumford-Tate torus and p, be the canonical measure on T,. For R big
enough, let i, g be the probability measure on A such that for all
continuous function f on A, we have

— Jensom

,LLoz,R(f - .
fCaﬂB(O,R)w

The main result is a consequence of the previous lemma and

Theorem
la,R Weakly converges to p, as R tends to oo.
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Example : The linear case.

The case of W a complex linear subspace of C& is a simple application of
Weyl's criterion. In this case 7(W) =Tw and pz.r — pw.

Real tori are needed
Let V be a C-vector space of dimension 2 and (e, €;) be a C-basis of V.
Let ' be the lattice

[=Ze ®ZN—1e; ® Zey, ®ZN—5es

Then A := A/T is an abelian variety of dimension 2. Let
W :=C(e + &) of V.

MT(W) = Q(e1 + &) + Qv —1ler + QV—be
and
MT(W) @R = R(e1 + &) + RV —1e; + RV —bey.
As a consequence MT (W)@ R/T N MT (W) ®@ R is a real torus of real
dimension 3.

This shows that we can't expect that in the conjecture 2 that the
analytic closure of (W) has a complex structure.
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Proposition
Let n > 3 be an integer. Let C € C? be the hyperelliptic curve with
equation

ZZ=27+a, 1Z7 -+ a.

Then for any abelian surface A= C2?/T we have 7(C) = A and
tc,R = fta as R — oo. In this case T¢ = A =T, for all infinite branches

Cy of C.
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Let C be the hyperbole Z;Z, = 1 in C2.

case 1.
Let I = Z[V=1] @ Z[v/—1] € C? and A= E x E = C?/T". Then

m(C)=7n(C)UE x {0} u{0} x E,
and 1
He,R — E(MEX{O} + 10y xE)-

In this case T¢ = A, with two branches C; near (0,00) and G, near
(00,0). Then Ty = {0} x E and T, = E x {0}.

case 2. R

If I C C? is such that the dual lattice [ of [ contains no element of the
form (0, b) or of the form (a,0), then m(C) = C?/T = A and puc.r — fia-
In this case T¢ =T; =T, = A.
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Algebraic flows : Harmonic Analysis

1. <, > canonical hermitian scalar product on C5.
2. (, ):=Re(<, >) the real part of <, >.
3. For any 6 € C8, we denote by xg the function on C& such that
Xo(z) = exp(2mi(0, 2)).
4.T= {(?\6 C# such that for all v € T, (0,v) € Z} the dual lattice.
Then ' ~ X*(A) through 6 — xo.
Let C, be an infinite branch of C. By Weyl's lemma the theorem is
equivalent to showing that for all 6 in I,

Ma,R(Xe) — ua(Xe)-
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Lemma

Let k > 2 be an integer, there exists a constant C = Cy such that for any
real numbers a < b, any functions f € C*([a, b]) such that

|FK)(x)| > X\ > 0 on [a, b] and any function 1) € C*[a, b]
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In this case G = G?, D = G(R)/K,, C C" is a bounded symmetric
domain. I is an arithmetic lattices and 7 : D — S =T\D.

Definition

A subset of D is said irreducible algebraic if it's a complex analytic
component of an intersection of an algebraic subvariety of C" with D.

Theorem

Hypebolic Ax-Lindemann, K-U-Y and P-T Let Z be an irreducible
algebraic subvariety of D. Then the Zariski closure of n(Z) is weakly
special.
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Algebraic flows on hermitian locally symmetric spaces

Definition
A real weakly special subvariety of S is a real analytic subset of S of

the form
Z=TNHR)"\H[R)".x

where H is an algebraic subgroup of G such that the radical of H is
unipotent and the real points of a Q-simple factors of a Levi of H are not
compact. Moreover x € Xt is such that K, N L(R)" is a maximal
compact subgroup of L(R)" for some Levi subgroup of H. One can check
that Z is independent of the choice of x and L.

Conjecture

Let © be an algebraic subvariety of D. Let S’ be the smallest weekly
special subvariety of S containing w(©). If S’ = S| x S} is a product of
hermitian locally symmetric spaces, assume that the projections of m(©)
on S; and S} are not closed. Then there exists a finite number of real
weakly special subvarieties Z1,...,Z, of S’, such that

r

(@) ==©)ulZ.

i=1
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Product of two modular curves

Example
Let G = SLy x SLy, XT = H x H and for some g € SLy(R)

Z ={(r,gr), T € H}.
Let T = SLy(Z) x SLy(Z) and
m:HxH— F\X+ = YO(].) X YO(].)

If g € G(Q), the closure of w(Z) is a special subvariety Yo(n) for some
neN. If g ¢ G(Q), then n(Z) is dense in T\X*.



