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Abelian Ax-Lindemann

Let A = Cg/Γ be a complex abelian variety of dimension g . Let
π : Cg −→ A be the uniformizing map.

A weakly special subvariety V
of A is a subvariety of the form V = P + B for an abelian subvariety B of
A and a point P ∈ A(C).

Abelian Ax-Lindemann theorem, (Pila-Zannier)

Theorem
Let Θ be an irreducible algebraic subvariety of Cg . The Zariski closure of
π(Θ) is weakly special.

Question
What can be said about the topological closure π(Θ) of π(Θ) ?
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Real weakly special subvarieties

Definition
Let W ⊂ Cg be a R-vector space such that ΓW := Γ ∩W is a lattice in
W. Then W /ΓW is a real torus and is a closed real analytic subset of A.

A real analytic subvariety V of A is said to be real weakly special if
V = P + W /ΓW for a point P and a real subtorus W /ΓW of A.
We denote by µV the normalized Haar measure on V .

Conjecture
Let A be a abelian variety of dimension g. Let Θ be a complex irreducible
algebraic subvariety of Cg . Then there exists a finite number Z1, . . . ,Zr
of real weakly special subvarieties of A such that

π(Θ) = π(Θ) ∪
r⋃

k=1
Zi .
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Algebraic flows : Measure theoretic version

Let ω = i
2

∑g
k=1 dzk ∧ dzk =

∑g
k=1 dxk ∧ dyk , and for R > 0 let B(0,R)

be the complex ball

B(0,R) = {(z1, . . . , zg ) ∈ Cg , |zk | < R}.

Let Θ be an algebraic subvariety of Cg of dimension d . For all R big
enough we define the probability measure µΘ,R on Cg such that for any
continuous function f on Cg ,

µΘ,R(f ) =
1
VR

∫
Θ∩B(0,R)

f ωd

where VR =
∫

Θ∩B(0,R)
ωd .
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Conjecture
Let A be a abelian variety of dimension g. Let Θ be an irreducible
complex algebraic subvariety of Cg .

Then there exists a finite number of
real weakly special subvarieties Z1, . . . ,Zr and some positive real

numbers c1, . . . , cr with
r∑

i=1
ci = 1, such that µΘ,R converges weakly to

the measure
∑r

k=1 ckµZk : For any continuous function f on A we have

µΘ,R(f )→
r∑

k=1
ckµZk (f )

as R →∞.
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Main result

Theorem
Let C be a curve in Cg . Let C1, . . . ,Cr be the set of all branches of C
through all points at infinity.

For all α ∈ {1, . . . , r} we will define a real
weakly special subvariety Tα. We will call it the asymptotic
Mumford-Tate torus associated to the branch Cα.
(i) We have

π(C) = π(C) ∪
r⋃

α=1
Tα.

(ii) Let µα be the canonical probability measure on Tα. There exists
positive real numbers c1, . . . , cr such that µC ,R converges weakly to

r∑
α=1

cαµα.



Main result

Theorem
Let C be a curve in Cg . Let C1, . . . ,Cr be the set of all branches of C
through all points at infinity. For all α ∈ {1, . . . , r} we will define a real
weakly special subvariety Tα. We will call it the asymptotic
Mumford-Tate torus associated to the branch Cα.

(i) We have

π(C) = π(C) ∪
r⋃

α=1
Tα.

(ii) Let µα be the canonical probability measure on Tα. There exists
positive real numbers c1, . . . , cr such that µC ,R converges weakly to

r∑
α=1

cαµα.



Main result

Theorem
Let C be a curve in Cg . Let C1, . . . ,Cr be the set of all branches of C
through all points at infinity. For all α ∈ {1, . . . , r} we will define a real
weakly special subvariety Tα. We will call it the asymptotic
Mumford-Tate torus associated to the branch Cα.
(i) We have

π(C) = π(C) ∪
r⋃

α=1
Tα.

(ii) Let µα be the canonical probability measure on Tα. There exists
positive real numbers c1, . . . , cr such that µC ,R converges weakly to

r∑
α=1

cαµα.



Main result

Theorem
Let C be a curve in Cg . Let C1, . . . ,Cr be the set of all branches of C
through all points at infinity. For all α ∈ {1, . . . , r} we will define a real
weakly special subvariety Tα. We will call it the asymptotic
Mumford-Tate torus associated to the branch Cα.
(i) We have

π(C) = π(C) ∪
r⋃

α=1
Tα.

(ii) Let µα be the canonical probability measure on Tα. There exists
positive real numbers c1, . . . , cr such that µC ,R converges weakly to

r∑
α=1

cαµα.



Mumford-Tate tori

Definition
Let Θ be an irreducible algebraic subvariety of Cg containing the origin O
of Cg .

The Mumford-Tate group MT (Θ) of Θ is defined as the smallest
Q-vector subspace W of Γ⊗Q such that Θ ⊂W ⊗ R. More generally, if
P ∈ Θ. Then we define MT (Θ) as MT(Θ− P). One can check that the
definition is independent of the choice of P ∈ Θ. Let WΘ := MT (Θ)⊗R.
We denote by TΘ the real weakly-special subvariety of A

TΘ = π(P) + WΘ/Γ ∩WΘ.

Then TΘ is independent of P and TΘ is the smallest real weakly special
subvariety of A containing π(Θ). We say that TΘ is the Mumford-Tate
torus associated to Θ. We write µΘ for µTΘ

.

Remark
Let Θ be an irreducible complex algebraic subvariety of Cg . Then
π(Θ) ⊂ TΘ. When do we have π(Θ) = TΘ ?
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Asymptotic Mumford-Tate Tori for curves.

Let C be a curve in Cg .

Let C∗ be the Zariski closure of C in P1(C)g .
Then C∗ − C is a finite set of points {P1, . . . ,Ps}. Let Cα be a branch of
C near a point Pi . There exists a smallest real affine subspace Qα + Wα

such that Wα ∩ Γ is a lattice in Wα and such that Cα is asymptotic to
Qα + Wα.

Definition
Let T′α := Wα/Γ ∩Wα and Tα := π(Qα) + T′α. We say that Tα is the
asymptotic Mumford-Tate torus associated to Cα

Lemma
(a) π(Cα)− Cα ⊂ Tα.
(b) Tα ⊂ TC .
(c) π(C) ⊂ π(C) ∪

⋃r
α=1 Tα.
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Let Cα be an infinite branch of C , Tα be the associated asymptotic
Mumford-Tate torus and µα be the canonical measure on Tα.

For R big
enough, let µα,R be the probability measure on A such that for all
continuous function f on A, we have

µα,R(f ) =

∫
Cα∩B(O,R)

f ω∫
Cα∩B(O,R)

ω
.

The main result is a consequence of the previous lemma and

Theorem
µα,R weakly converges to µα as R tends to ∞.
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Example : The linear case.
The case of W a complex linear subspace of Cg is a simple application of
Weyl’s criterion. In this case π(W ) = TW and µZ ,R → µW .

Real tori are needed
Let V be a C-vector space of dimension 2 and (e1, e2) be a C-basis of V .
Let Γ be the lattice

Γ := Ze1 ⊕ Z
√
−1e1 ⊕ Ze2 ⊕ Z

√
−5e2

Then A := A/Γ is an abelian variety of dimension 2. Let
W := C(e1 + e2) of V .

MT (W ) = Q(e1 + e2) + Q
√
−1e1 + Q

√
−5e2

and
MT (W )⊗ R = R(e1 + e2) + R

√
−1e1 + R

√
−5e2.

As a consequence MT (W )⊗ R/Γ ∩MT (W )⊗ R is a real torus of real
dimension 3.
This shows that we can’t expect that in the conjecture 2 that the
analytic closure of π(W ) has a complex structure.
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Instructing example 1

Proposition
Let n ≥ 3 be an integer. Let C ∈ C2 be the hyperelliptic curve with
equation

Z 2
2 = Z n

1 + an−1Z n−1
1 + · · ·+ a0.

Then for any abelian surface A = C2/Γ we have π(C) = A and
µC ,R → µA as R →∞. In this case TC = A = Tα for all infinite branches
Cα of C.
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Instructing example 2

Let C be the hyperbole Z1Z2 = 1 in C2.

case 1.
Let Γ = Z[

√
−1]⊕ Z[

√
−1] ⊂ C2 and A = E × E = C2/Γ. Then

π(C) = π(C) ∪ E × {0} ∪ {0} × E ,

and
µC ,R →

1
2 (µE×{0} + µ{0}×E ).

In this case TC = A, with two branches C1 near (0,∞) and C2 near
(∞, 0). Then T1 = {0} × E and T2 = E × {0}.

case 2.
If Γ ⊂ C2 is such that the dual lattice Γ̂ of Γ contains no element of the
form (0, b) or of the form (a, 0), then π(C) = C2/Γ = A and µC ,R → µA.
In this case TC = T1 = T2 = A.
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Algebraic flows : Harmonic Analysis

1. < , > canonical hermitian scalar product on Cg .

2. ( , ) := Re(< , >) the real part of < , >.
3. For any θ ∈ Cg , we denote by χθ the function on Cg such that
χθ(z) = exp(2πi(θ, z)).

4. Γ̂ = {θ ∈ Cg such that for all γ ∈ Γ, (θ, γ) ∈ Z} the dual lattice.
Then Γ̂ ' X∗(A) through θ 7→ χθ.

Let Cα be an infinite branch of C . By Weyl’s lemma the theorem is
equivalent to showing that for all θ in Γ̂,

µα,R(χθ)→ µα(χθ).
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Main results in terms of harmonic analysis.
Let φ be a function of a complex variable z with a Puiseux expansion
given for z big enough by

φ(z) =
∑
n≥0

anzα−
n
e

with e ∈ N∗ and 0 ≤ α ∈ Q.

Let
Jφ(R) =

∫
A<|z|<R

exp(iRe(φ(z)))
idz ∧ dz
2R2 . (1)

Theorem
(i) If α > 0, or α = 0 and a0 = 0, then

Jφ(R) −→ 0

as R →∞.
(ii) If α = 0 and a0 6= 0, then

Jφ(R) −→ π exp(iRe(a0))

as R →∞.
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Van der Corput Lemma- Oscillatory integrals

Lemma
Let k ≥ 2 be an integer,

there exists a constant C = Ck such that for any
real numbers a < b, any functions f ∈ Ck([a, b]) such that
|f (k)(x)| > λ > 0 on [a, b] and any function ψ ∈ C1[a, b]

|
∫ b

a
exp(if (x))ψ(x)dx | ≤ Ck(‖ψ‖L∞([a,b]) + ‖ψ′‖L1([a,b]))λ

− 1
k . (2)

If k = 1 and f ′ is monotone the conclusion also holds.
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Hyperbolic Ax-Lindemann

In this case G = Gad , D = G(R)/K∞ ⊂ Cn is a bounded symmetric
domain. Γ is an arithmetic lattices and π : D → S = Γ\D.

Definition
A subset of D is said irreducible algebraic if it’s a complex analytic
component of an intersection of an algebraic subvariety of Cn with D.

Theorem
Hypebolic Ax-Lindemann, K-U-Y and P-T Let Z be an irreducible
algebraic subvariety of D. Then the Zariski closure of π(Z ) is weakly
special.
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Algebraic flows on hermitian locally symmetric spaces
Definition
A real weakly special subvariety of S is a real analytic subset of S of
the form

Z = Γ ∩ H(R)+\H(R)+.x

where H is an algebraic subgroup of G such that the radical of H is
unipotent and the real points of a Q-simple factors of a Levi of H are not
compact.

Moreover x ∈ X+ is such that Kx ∩ L(R)+ is a maximal
compact subgroup of L(R)+ for some Levi subgroup of H. One can check
that Z is independent of the choice of x and L.

Conjecture
Let Θ be an algebraic subvariety of D. Let S ′ be the smallest weekly
special subvariety of S containing π(Θ). If S ′ = S ′1 × S ′2 is a product of
hermitian locally symmetric spaces, assume that the projections of π(Θ)
on S ′1 and S ′2 are not closed. Then there exists a finite number of real
weakly special subvarieties Z1, . . . ,Zr of S ′, such that

π(Θ) = π(Θ) ∪
r⋃

i=1
Zi .
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Theorem
Let V be a complex totally geodesic subspace of D. Then π(V ) is real
weakly special.

Proof : ergodic theory (Ratner’s theorem).
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Product of two modular curves

Example
Let G = SL2 × SL2, X+ = H×H and for some g ∈ SL2(R)

Z = {(τ, gτ), τ ∈ H}.

Let Γ = SL2(Z)× SL2(Z) and

π : H×H −→ Γ\X+ = Y0(1)× Y0(1).

If g ∈ G(Q), the closure of π(Z ) is a special subvariety Y0(n) for some
n ∈ N. If g /∈ G(Q), then π(Z ) is dense in Γ\X+.
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